Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset.
IF 1.1 3区 计算机科学Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset.","authors":"Nandhini Selvaganapathy, Saravanan Siddhan, Parthasarathy Sundararajan, Sathiyaprasad Balasundaram","doi":"10.1080/0954898X.2024.2424242","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the epidemic growth of diabetes, ophthalmologists need to examine the huge fundus images for diagnosing the disease of Diabetic Retinopathy (DR). Without proper knowledge, people are too lethargic to detect the DR. Therefore, the early diagnosis system is requisite for treating ailments in the medical industry. Therefore, a novel deep model-based DR detection structure is recommended to fix the aforementioned difficulties. The developed deep model-based diabetic retinopathy detection process is performed adaptively. The DR detection process is imitated by garnering the images from benchmark sources. The gathered images are further preceded by the abnormality segmentation phase. Here, the Residual TransUNet with Enhanced loss function is used to employ the abnormality segmentation, and the loss function in this structure may be helpful to lessen the error in the segmentation procedure. Further, the segmented images are passed to the final phase of retinopathy detection. At this phase, the detection is carried out through the Adaptive Multiscale MobileNet. The variables in the AMMNet are optimized by the Adaptive Puzzle Optimization to obtain better detection performance. Finally, the effectiveness of the offered approach is confirmed by the experimentation procedure over various performance indices.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-33"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2424242","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the epidemic growth of diabetes, ophthalmologists need to examine the huge fundus images for diagnosing the disease of Diabetic Retinopathy (DR). Without proper knowledge, people are too lethargic to detect the DR. Therefore, the early diagnosis system is requisite for treating ailments in the medical industry. Therefore, a novel deep model-based DR detection structure is recommended to fix the aforementioned difficulties. The developed deep model-based diabetic retinopathy detection process is performed adaptively. The DR detection process is imitated by garnering the images from benchmark sources. The gathered images are further preceded by the abnormality segmentation phase. Here, the Residual TransUNet with Enhanced loss function is used to employ the abnormality segmentation, and the loss function in this structure may be helpful to lessen the error in the segmentation procedure. Further, the segmented images are passed to the final phase of retinopathy detection. At this phase, the detection is carried out through the Adaptive Multiscale MobileNet. The variables in the AMMNet are optimized by the Adaptive Puzzle Optimization to obtain better detection performance. Finally, the effectiveness of the offered approach is confirmed by the experimentation procedure over various performance indices.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.