{"title":"Composite Iodine-gold Nanoparticles as a Contrast Agent in Computed Tomography.","authors":"Rezvan Ravanfar Haghighi, Fariba Zarei, Samira Moshiri, Anahita Jafari, Sabyasachi Chatterjee, Vyas Akondi, Vani Vardhan Chatterjee","doi":"10.4103/jmp.jmp_126_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Solutions of iodine-based compounds, due to their high X-ray attenuation coefficient, are widely used as contrast agents in computed tomography (CT) imaging. This paper investigates the attenuation properties of iodine and gold to develop nanoparticle-based contrast agents, for example, composite nanoparticles (NPs) with layers of iodine and gold or a mixture of NPs of gold and iodine.</p><p><strong>Materials and methods: </strong>A theoretical formula is derived that gives the Hounsfield Unit (HU) for different weight-by-weight (w/w) concentrations of a mixture of blood + iodine + gold. The range of compositions for which iodine + gold mixture can give a suitable HU ≥<i>250</i> upon being mixed with blood, is formulated. These estimates are derived from experiments on the variation of HU values in different compositions of aqueous solutions of iodine and available data for gold.</p><p><strong>Results: </strong>It is seen that for an aqueous solution of iodine, the suitable HU of 250 (hence giving sufficient gray level to the CT image) can be obtained with w/w concentrations of iodine being 0.0044, 0.008, and 0.0097 for observations at 80, 100, and 120 kVp, respectively. The corresponding w/w concentrations of gold NPs would be 0.0103, 0.0131, and 0.0158. With these basic results, compositions of suitable mixtures of iodine and gold are also specified.</p><p><strong>Conclusion: </strong>Aqueous suspensions of gold NPs are suitable as contrast materials for CT imaging and can also be used as a component of a composite contrast material consisting of an iodine and gold mixture.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"448-455"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_126_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Solutions of iodine-based compounds, due to their high X-ray attenuation coefficient, are widely used as contrast agents in computed tomography (CT) imaging. This paper investigates the attenuation properties of iodine and gold to develop nanoparticle-based contrast agents, for example, composite nanoparticles (NPs) with layers of iodine and gold or a mixture of NPs of gold and iodine.
Materials and methods: A theoretical formula is derived that gives the Hounsfield Unit (HU) for different weight-by-weight (w/w) concentrations of a mixture of blood + iodine + gold. The range of compositions for which iodine + gold mixture can give a suitable HU ≥250 upon being mixed with blood, is formulated. These estimates are derived from experiments on the variation of HU values in different compositions of aqueous solutions of iodine and available data for gold.
Results: It is seen that for an aqueous solution of iodine, the suitable HU of 250 (hence giving sufficient gray level to the CT image) can be obtained with w/w concentrations of iodine being 0.0044, 0.008, and 0.0097 for observations at 80, 100, and 120 kVp, respectively. The corresponding w/w concentrations of gold NPs would be 0.0103, 0.0131, and 0.0158. With these basic results, compositions of suitable mixtures of iodine and gold are also specified.
Conclusion: Aqueous suspensions of gold NPs are suitable as contrast materials for CT imaging and can also be used as a component of a composite contrast material consisting of an iodine and gold mixture.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.