R.J.J. de Wit , D. Tiemessen , E. Oosterwijk , A.F.T.M. Verhagen
{"title":"Functional outcome of cell seeded tracheal scaffold after mechanical stress in vitro","authors":"R.J.J. de Wit , D. Tiemessen , E. Oosterwijk , A.F.T.M. Verhagen","doi":"10.1016/j.bioadv.2024.214088","DOIUrl":null,"url":null,"abstract":"<div><div>Tracheal tissue engineering is still facing major challenges: realization of efficient vascularization and mechanical properties comparable to native trachea need to be achieved. In this study, we present a strategy for the manufacturing of a construct for tracheal tissue engineering by conditioning through cell seeding followed by mechanical stimulation in vitro. Scaffolds derived from porcine trachea decellularized with supercritical carbon dioxide were seeded with stem cells of different tissue sources and cultured in a bioreactor for 21 days under mechanical stimulation. Enhanced chondrogenic development was demonstrated, with improved sulphated glycosaminoglycan secretion and cellular alignment which resulted in mechanical properties resembling native trachea. This method may provide a useful addition to tracheal tissue engineering strategies aimed at optimizing cartilage formation.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"167 ","pages":"Article 214088"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003315","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tracheal tissue engineering is still facing major challenges: realization of efficient vascularization and mechanical properties comparable to native trachea need to be achieved. In this study, we present a strategy for the manufacturing of a construct for tracheal tissue engineering by conditioning through cell seeding followed by mechanical stimulation in vitro. Scaffolds derived from porcine trachea decellularized with supercritical carbon dioxide were seeded with stem cells of different tissue sources and cultured in a bioreactor for 21 days under mechanical stimulation. Enhanced chondrogenic development was demonstrated, with improved sulphated glycosaminoglycan secretion and cellular alignment which resulted in mechanical properties resembling native trachea. This method may provide a useful addition to tracheal tissue engineering strategies aimed at optimizing cartilage formation.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!