An in vitro bioinspired approach to enhance the bioactivity of titanium implants via electrophoretic deposition and biomimetic mineralization of type i collagen
Man Wang , Muqi Jiang , Qi Wang , Yasheng Sun , Zhixiang Nie , William M. Palin , Zhen Zhang
{"title":"An in vitro bioinspired approach to enhance the bioactivity of titanium implants via electrophoretic deposition and biomimetic mineralization of type i collagen","authors":"Man Wang , Muqi Jiang , Qi Wang , Yasheng Sun , Zhixiang Nie , William M. Palin , Zhen Zhang","doi":"10.1016/j.bioadv.2024.214110","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aims to explore the efficacy of Electrophoretic Deposition (EPD) for collagen type I coating on titanium implants and its subsequent mineralization to improve osseointegration and bone regeneration.</div></div><div><h3>Methods</h3><div>Titanium disks were prepared with a sandblasted, large grit and acid-etched (SLA) surface. EPD was employed to deposit collagen type I onto the titanium surfaces, followed by two modes of mineralization: extra-fibril mineralization (EFM) and inter-fibril mineralization (IFM). Then comprehensive in vitro studies were conducted including surface properties, cell proliferation, osteogenic differentiation, and inflammatory responses.</div></div><div><h3>Results</h3><div>EPD successfully deposited a uniform collagen layer on titanium surfaces. EFM resulted in deposition of larger, irregularly shaped crystals, while IFM produced controlled, helical fibril mineralization. IFM-treated surfaces exhibited enhanced cell viability, proliferation, and osteogenic differentiation. Both EFM and IFM surfaces triggered higher macrophage activation than SLA surfaces. While EFM primarily induced a stronger M1 pro-inflammatory response, IFM exhibited a more balanced macrophage polarization with upregulated M2 markers at later stages.</div></div><div><h3>Conclusion</h3><div>EPD, particularly when integrated with IFM, significantly enhances the bioactivity and osteogenic potential of collagen-coated titanium implants. This method surpasses traditional SLA surfaces by stabilizing the collagen layer and creating a biomimetic environment conducive to bone regeneration and healing through a balanced inflammatory response, offering a promising strategy to improve titanium implant performance.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"167 ","pages":"Article 214110"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003534","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This study aims to explore the efficacy of Electrophoretic Deposition (EPD) for collagen type I coating on titanium implants and its subsequent mineralization to improve osseointegration and bone regeneration.
Methods
Titanium disks were prepared with a sandblasted, large grit and acid-etched (SLA) surface. EPD was employed to deposit collagen type I onto the titanium surfaces, followed by two modes of mineralization: extra-fibril mineralization (EFM) and inter-fibril mineralization (IFM). Then comprehensive in vitro studies were conducted including surface properties, cell proliferation, osteogenic differentiation, and inflammatory responses.
Results
EPD successfully deposited a uniform collagen layer on titanium surfaces. EFM resulted in deposition of larger, irregularly shaped crystals, while IFM produced controlled, helical fibril mineralization. IFM-treated surfaces exhibited enhanced cell viability, proliferation, and osteogenic differentiation. Both EFM and IFM surfaces triggered higher macrophage activation than SLA surfaces. While EFM primarily induced a stronger M1 pro-inflammatory response, IFM exhibited a more balanced macrophage polarization with upregulated M2 markers at later stages.
Conclusion
EPD, particularly when integrated with IFM, significantly enhances the bioactivity and osteogenic potential of collagen-coated titanium implants. This method surpasses traditional SLA surfaces by stabilizing the collagen layer and creating a biomimetic environment conducive to bone regeneration and healing through a balanced inflammatory response, offering a promising strategy to improve titanium implant performance.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!