Skeletal muscle reactive oxygen species and microvascular endothelial function in age-related hypertension: a study protocol using a microdialysis technique.
Hollie Speer, Mostafa M Ali, Nathan M D'Cunha, Nenad Naumovski, Stephan F E Praet, Robert C Hickner, Andrew J McKune
{"title":"Skeletal muscle reactive oxygen species and microvascular endothelial function in age-related hypertension: a study protocol using a microdialysis technique.","authors":"Hollie Speer, Mostafa M Ali, Nathan M D'Cunha, Nenad Naumovski, Stephan F E Praet, Robert C Hickner, Andrew J McKune","doi":"10.1113/JP287187","DOIUrl":null,"url":null,"abstract":"<p><p>Increased reactive oxygen species (ROS) generation and microvascular endothelial disruptions occur with natural ageing, but often transpire before the detection of cardiometabolic conditions including hypertension. Age-related increases in blood pressure are driven by complex systemic changes with poorly understood integrated mechanisms. The deconditioning experienced by ageing skeletal muscle from mid-life is associated with reduced microvascular blood flow and increased peripheral resistance, suggesting that vasodilatory decrements in the muscle may precede the age-related increases in blood pressure. Structural and functional changes within the vascular and skeletal muscle systems with advancing age can influence redox homeostasis, and vice versa, further compounding microvascular endothelial dysfunction. Therefore, comparisons between the microvascular environments of healthy and hypertensive cohorts can provide insights into the changes that occur during significant periods of functional decline. This comprehensive study protocol describes a microdialysis technique to assess the interactions of microvascular health and functional changes in the muscle, which currently cannot be otherwise addressed. Here, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H<sub>2</sub>O<sub>2</sub> and indirect O<sub>2</sub> <sup>-</sup>), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. We expect that healthy middle-aged individuals should not have increased ROS generation in the muscle at rest, compared to their hypertensive or older counterparts, but may exhibit perturbed microvascular function. The described technique allows for intricate exploration of microvascular physiology that will provide a critically novel insight into benchmarking potential age-related mechanisms involved in the development of age-related hypertension, and aid in early identification and prevention. KEY POINTS: Increased reactive oxygen species (ROS) production and microvascular endothelial dysfunction precede the onset of age-related cardiometabolic and vascular conditions such as hypertension. The profound structural and functional changes that occur within the vasculature and in skeletal muscle from middle age prompt a need to mechanistically explore the microvascular environment in healthy and hypertensive individuals. Using a novel microdialysis technique, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H<sub>2</sub>O<sub>2</sub> and indirect O<sub>2</sub> <sup>-</sup>), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. With this technique and study protocol, we can reveal functional insights into potential perturbations in ROS generation at rest and the microvascular endothelium, which play important roles in the development of age-related hypertension.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287187","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Increased reactive oxygen species (ROS) generation and microvascular endothelial disruptions occur with natural ageing, but often transpire before the detection of cardiometabolic conditions including hypertension. Age-related increases in blood pressure are driven by complex systemic changes with poorly understood integrated mechanisms. The deconditioning experienced by ageing skeletal muscle from mid-life is associated with reduced microvascular blood flow and increased peripheral resistance, suggesting that vasodilatory decrements in the muscle may precede the age-related increases in blood pressure. Structural and functional changes within the vascular and skeletal muscle systems with advancing age can influence redox homeostasis, and vice versa, further compounding microvascular endothelial dysfunction. Therefore, comparisons between the microvascular environments of healthy and hypertensive cohorts can provide insights into the changes that occur during significant periods of functional decline. This comprehensive study protocol describes a microdialysis technique to assess the interactions of microvascular health and functional changes in the muscle, which currently cannot be otherwise addressed. Here, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H2O2 and indirect O2-), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. We expect that healthy middle-aged individuals should not have increased ROS generation in the muscle at rest, compared to their hypertensive or older counterparts, but may exhibit perturbed microvascular function. The described technique allows for intricate exploration of microvascular physiology that will provide a critically novel insight into benchmarking potential age-related mechanisms involved in the development of age-related hypertension, and aid in early identification and prevention. KEY POINTS: Increased reactive oxygen species (ROS) production and microvascular endothelial dysfunction precede the onset of age-related cardiometabolic and vascular conditions such as hypertension. The profound structural and functional changes that occur within the vasculature and in skeletal muscle from middle age prompt a need to mechanistically explore the microvascular environment in healthy and hypertensive individuals. Using a novel microdialysis technique, we detail an experimental protocol to simultaneously detect skeletal muscle ROS (H2O2 and indirect O2-), determine nutritive blood flow and assess microvascular endothelial function in response to acetylcholine stimulation. With this technique and study protocol, we can reveal functional insights into potential perturbations in ROS generation at rest and the microvascular endothelium, which play important roles in the development of age-related hypertension.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.