{"title":"Strong Red Luminescence in Europium Complexes Solution for Anti-Counterfeiting Applications","authors":"Xue Yang, Dangli Gao, Jia Yu, Xiangyu Zhang, Qing Pang, Ruipeng Chai, Sining Yun","doi":"10.1002/bio.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Eu<sup>3+</sup>-activated phosphors with distinct photoluminescence properties are well-suited for diverse applications, including lighting, sensing, and imaging. Despite their potential, the large-scale and energy-efficient production of Eu<sup>3+</sup>-doped phosphors remains a significant challenge for industrial applications. This research delves into the luminescent performance of Eu<sup>3+</sup> ions in nitrate solutions at room temperature by employing detailed spectroscopic characterization. Results reveal vibrant red luminescence at 594 nm and 616 nm in europium nitrate solutions, irrespective of concentration or solvent. We proposed a luminescent mechanism based on the formation of coordination complexes in nitrate solution. Furthermore, the investigation highlights the superior performance of NH<sub>2</sub>- over CH<sub>2</sub>-ligands in mitigating the deactivation of Eu<sup>3+</sup> emissive state induced by OH<sup>−</sup> oscillators in H<sub>2</sub>O solvent, leading to enhanced photoluminescence. Particularly, europium nitrate solutions without lengthy preparation exhibit ligand-dependent luminescent feature, showcasing potential applications in anti-counterfeiting and coordination group structure detection. This study here not only enhances our understanding of rare earth luminescence mechanisms, but also broadens the range of rare earth luminescent materials.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Eu3+-activated phosphors with distinct photoluminescence properties are well-suited for diverse applications, including lighting, sensing, and imaging. Despite their potential, the large-scale and energy-efficient production of Eu3+-doped phosphors remains a significant challenge for industrial applications. This research delves into the luminescent performance of Eu3+ ions in nitrate solutions at room temperature by employing detailed spectroscopic characterization. Results reveal vibrant red luminescence at 594 nm and 616 nm in europium nitrate solutions, irrespective of concentration or solvent. We proposed a luminescent mechanism based on the formation of coordination complexes in nitrate solution. Furthermore, the investigation highlights the superior performance of NH2- over CH2-ligands in mitigating the deactivation of Eu3+ emissive state induced by OH− oscillators in H2O solvent, leading to enhanced photoluminescence. Particularly, europium nitrate solutions without lengthy preparation exhibit ligand-dependent luminescent feature, showcasing potential applications in anti-counterfeiting and coordination group structure detection. This study here not only enhances our understanding of rare earth luminescence mechanisms, but also broadens the range of rare earth luminescent materials.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.