{"title":"Schiff Base Mediated Synthesis of Novel Imidazolidine-4-One Derivatives for Potential Antimicrobial and Anthelmintic Activities","authors":"Naresh Babu Chilamakuru, Triveni Singirisetty, Anoop Bodapati, Sudha Divya Madhuri Kallam, Vinod Kumar Nelson, Punna Rao Suryadevara, Selvankumar Thangaswamy","doi":"10.1002/bio.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of −7.839 and −7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, and <i>Candida albicans</i>, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against <i>E. coli</i>. S2 also demonstrated impressive activity against <i>S. aureus</i> (MIC 3.12 μg/mL), and S4 exhibited potent activity against <i>C. albicans</i> (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"39 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70026","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of −7.839 and −7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, and Candida albicans, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against E. coli. S2 also demonstrated impressive activity against S. aureus (MIC 3.12 μg/mL), and S4 exhibited potent activity against C. albicans (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.