{"title":"Gender-Based Differences in the Biomechanical Behavior of the Thorax During CPR Maneuvers.","authors":"María Ferrón-Vivó, María José Rupérez","doi":"10.1002/cnm.3887","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, 18 rib cages (8 males and 10 females) were segmented from computer tomography (CT) images. In order to analyze the potential differences in thoracic biomechanics during cardiopulmonary resuscitation (CPR), a set of numerical experiments was conducted using finite elements (FE). Compression forces were applied at different points on the rib cage. Results indicated that the optimal compression area for both sexes is the sternum at the 5th rib level, requiring the least force to achieve the desired compression depth. Males required greater force than females. Among females, those with lower width/depth ratios (more rounded thoracic shape) required less force compared to those with higher ratios (more oval-shaped thorax).</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3887"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3887","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, 18 rib cages (8 males and 10 females) were segmented from computer tomography (CT) images. In order to analyze the potential differences in thoracic biomechanics during cardiopulmonary resuscitation (CPR), a set of numerical experiments was conducted using finite elements (FE). Compression forces were applied at different points on the rib cage. Results indicated that the optimal compression area for both sexes is the sternum at the 5th rib level, requiring the least force to achieve the desired compression depth. Males required greater force than females. Among females, those with lower width/depth ratios (more rounded thoracic shape) required less force compared to those with higher ratios (more oval-shaped thorax).
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.