{"title":"Mitochondrial E3 ligase TRIM71 affects mitochondrial complex assembly and sensitizes dopaminergic neuronal cells to apoptosis in Parkinson’s Disease (PD)","authors":"Shanikumar Goyani, Shatakshi Shukla, Minal Mane, M.V. Saranga, Nisha Chandak, Anjali Shinde, Fatema Currim, Jyoti Singh, Rajesh Singh","doi":"10.1016/j.biocel.2024.106689","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that impacts the substantia niagra region of the midbrain leading to impaired motor as well as non-motor symptoms of the central nervous system (CNS). Mitochondrial dysfunction has been characterized as the primary cause of dopaminergic neuronal loss, however, the molecular mechanisms leading to mitochondrial dysfunction are not completely understood. PARKIN, E3 ubiquitin ligase, plays a crucial role in maintaining mitochondrial quality control, albeit the role of other E3 ligases in regulating mitochondrial functions is not understood. In the current study, we explored the implication of TRIM71, E3 ubiquitin ligase, in the modulation of mitochondrial functions and neuronal death in PD stress conditions induced by rotenone and 6-OHDA. Ectopic expression of TRIM71 in SH-SY5Y dopaminergic neuronal cells sensitizes to PD stress-induced cell death, while its knock-down rescues neuronal cell death. TRIM71 turnover is enhanced in neurons under PD stress conditions. TRIM71 predominantly localizes on the outer mitochondrial membrane and translocation increases during PD stress conditions. TRIM71 regulates mitochondrial complex I and IV assembly and activity. TRIM71 knock-down decreases mitochondrial ROS and enhances ATP level as well as mitochondrial membrane potential in PD stress conditions. TRIM71-mediated mitochondrial ROS and cell death were rescued by mitoTEMPO, a mitochondrial-targeted antioxidant. Altogether, the evidence strongly suggests TRIM71-mediated modulation of mitochondrial functions and neuronal apoptosis in PD stress conditions.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"177 ","pages":"Article 106689"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001821","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that impacts the substantia niagra region of the midbrain leading to impaired motor as well as non-motor symptoms of the central nervous system (CNS). Mitochondrial dysfunction has been characterized as the primary cause of dopaminergic neuronal loss, however, the molecular mechanisms leading to mitochondrial dysfunction are not completely understood. PARKIN, E3 ubiquitin ligase, plays a crucial role in maintaining mitochondrial quality control, albeit the role of other E3 ligases in regulating mitochondrial functions is not understood. In the current study, we explored the implication of TRIM71, E3 ubiquitin ligase, in the modulation of mitochondrial functions and neuronal death in PD stress conditions induced by rotenone and 6-OHDA. Ectopic expression of TRIM71 in SH-SY5Y dopaminergic neuronal cells sensitizes to PD stress-induced cell death, while its knock-down rescues neuronal cell death. TRIM71 turnover is enhanced in neurons under PD stress conditions. TRIM71 predominantly localizes on the outer mitochondrial membrane and translocation increases during PD stress conditions. TRIM71 regulates mitochondrial complex I and IV assembly and activity. TRIM71 knock-down decreases mitochondrial ROS and enhances ATP level as well as mitochondrial membrane potential in PD stress conditions. TRIM71-mediated mitochondrial ROS and cell death were rescued by mitoTEMPO, a mitochondrial-targeted antioxidant. Altogether, the evidence strongly suggests TRIM71-mediated modulation of mitochondrial functions and neuronal apoptosis in PD stress conditions.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics