Unravelling demographic and socioeconomic patterns of COVID-19 death and other causes of death: results of an individual-level analysis of exhaustive cause of death data in Belgium, 2020.
IF 3.2 3区 医学Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Lisa Cavillot, Laura Van den Borre, Katrien Vanthomme, Aline Scohy, Patrick Deboosere, Brecht Devleesschauwer, Niko Speybroeck, Sylvie Gadeyne
{"title":"Unravelling demographic and socioeconomic patterns of COVID-19 death and other causes of death: results of an individual-level analysis of exhaustive cause of death data in Belgium, 2020.","authors":"Lisa Cavillot, Laura Van den Borre, Katrien Vanthomme, Aline Scohy, Patrick Deboosere, Brecht Devleesschauwer, Niko Speybroeck, Sylvie Gadeyne","doi":"10.1186/s13690-024-01437-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic led to significant excess mortality in 2020 in Belgium. By using microlevel cause-specific mortality data for the total adult population in Belgium in 2020, three outcomes were considered in this study aiming at predicting sociodemographic (SD) and socioeconomic (SE) patterns of (1) COVID-19 specific death compared to survival; (2) all other causes of death (OCOD) compared to survival; and (3) COVID-19 specific death compared to all OCOD.</p><p><strong>Methods: </strong>Two complementary statistical methods were used. First, multivariable logistic regression models providing odds ratios and 95% confidence intervals were fitted for the three study outcomes. In addition, we computed conditional inference tree (CIT) algorithms, a non-parametric class of classification trees, to identify and rank by significance level the strongest predictors of the three study outcomes.</p><p><strong>Results: </strong>Older individuals, males, individuals living in collectivities, first-generation migrants, and deprived SE groups experienced higher odds of dying from COVID-19 compared to survival; living in collectivities was identified by the CIT as the strongest predictor followed by age and sex. Education emerged as one of the strongest predictors for individuals not living in collectivities. Overall, similar patterns were observed for all OCOD except for first- and second-generation migrants having lower odds of all OCOD compared to survival; age group was identified by the CIT as the strongest predictor. Older individuals, males, individuals living in collectivities, first- and second-generation migrants, and individuals with lower levels of education had higher odds of COVID-19 death compared to all OCOD; living in collectivities was identified by the CIT as the strongest predictor followed by age, sex, and migration background. Education and income emerged as among the strongest predictors among individuals not living in collectivities.</p><p><strong>Conclusions: </strong>This study identified important SD and SE disparities in COVID-19 mortality, with living in collectivities highlighted as the strongest predictor. This underlines the importance of implementing preventive measures, particularly within the most vulnerable populations, in infectious disease pandemic preparedness to reduce virus circulation and the resulting lethality.</p>","PeriodicalId":48578,"journal":{"name":"Archives of Public Health","volume":"82 1","pages":"209"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Public Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13690-024-01437-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The COVID-19 pandemic led to significant excess mortality in 2020 in Belgium. By using microlevel cause-specific mortality data for the total adult population in Belgium in 2020, three outcomes were considered in this study aiming at predicting sociodemographic (SD) and socioeconomic (SE) patterns of (1) COVID-19 specific death compared to survival; (2) all other causes of death (OCOD) compared to survival; and (3) COVID-19 specific death compared to all OCOD.
Methods: Two complementary statistical methods were used. First, multivariable logistic regression models providing odds ratios and 95% confidence intervals were fitted for the three study outcomes. In addition, we computed conditional inference tree (CIT) algorithms, a non-parametric class of classification trees, to identify and rank by significance level the strongest predictors of the three study outcomes.
Results: Older individuals, males, individuals living in collectivities, first-generation migrants, and deprived SE groups experienced higher odds of dying from COVID-19 compared to survival; living in collectivities was identified by the CIT as the strongest predictor followed by age and sex. Education emerged as one of the strongest predictors for individuals not living in collectivities. Overall, similar patterns were observed for all OCOD except for first- and second-generation migrants having lower odds of all OCOD compared to survival; age group was identified by the CIT as the strongest predictor. Older individuals, males, individuals living in collectivities, first- and second-generation migrants, and individuals with lower levels of education had higher odds of COVID-19 death compared to all OCOD; living in collectivities was identified by the CIT as the strongest predictor followed by age, sex, and migration background. Education and income emerged as among the strongest predictors among individuals not living in collectivities.
Conclusions: This study identified important SD and SE disparities in COVID-19 mortality, with living in collectivities highlighted as the strongest predictor. This underlines the importance of implementing preventive measures, particularly within the most vulnerable populations, in infectious disease pandemic preparedness to reduce virus circulation and the resulting lethality.
期刊介绍:
rchives of Public Health is a broad scope public health journal, dedicated to publishing all sound science in the field of public health. The journal aims to better the understanding of the health of populations. The journal contributes to public health knowledge, enhances the interaction between research, policy and practice and stimulates public health monitoring and indicator development. The journal considers submissions on health outcomes and their determinants, with clear statements about the public health and policy implications. Archives of Public Health welcomes methodological papers (e.g., on study design and bias), papers on health services research, health economics, community interventions, and epidemiological studies dealing with international comparisons, the determinants of inequality in health, and the environmental, behavioural, social, demographic and occupational correlates of health and diseases.