Zehua Yang, Yamei Zheng, Lei Zhang, Jie Zhao, Wenya Xu, Haihong Wu, Tian Xie, Yipeng Ding
{"title":"Screening the Best Risk Model and Susceptibility SNPs for Chronic Obstructive Pulmonary Disease (COPD) Based on Machine Learning Algorithms.","authors":"Zehua Yang, Yamei Zheng, Lei Zhang, Jie Zhao, Wenya Xu, Haihong Wu, Tian Xie, Yipeng Ding","doi":"10.2147/COPD.S478634","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Chronic obstructive pulmonary disease (COPD) is a common and progressive disease that is influenced by both genetic and environmental factors, and genetic factors are important determinants of COPD. This study focuses on screening the best predictive models for assessing COPD-associated SNPs and then using the best models to predict potential risk factors for COPD.</p><p><strong>Methods: </strong>Healthy subjects (n=290) and COPD patients (n=233) were included in this study, the Agena MassARRAY platform was applied to genotype the subjects for SNPs. The selected sample loci were first screened by logistic regression analysis, based on which the key SNPs were further screened by LASSO regression, RFE algorithm and Random Forest algorithm, and the ROC curves were plotted to assess the discriminative performance of the models to screen the best prediction model. Finally, the best prediction model was used for the prediction of risk factors for COPD.</p><p><strong>Results: </strong>One-way logistic regression analysis screened 44 candidate SNPs from 146 SNPs, on the basis of which 44 SNPs were screened or feature ranked using LASSO model, RFE-Caret, RFE-Lda, RFE-lr, RFE-nb, RFE-rf, RFE-treebag algorithms and random forest model, respectively, and obtained ROC curve values of 0.809, 0.769, 0.798, 0.743, 0.686, 0.766, 0.743, 0.719, respectively, so we selected the lasso model as the best model, and then constructed a column-line graph model for the 25 SNPs screened in it, and found that rs12479210 might be the potential risk factors for COPD.</p><p><strong>Conclusion: </strong>The LASSO model is the best predictive model for COPD and rs12479210 may be a potential risk locus for COPD.</p>","PeriodicalId":48818,"journal":{"name":"International Journal of Chronic Obstructive Pulmonary Disease","volume":"19 ","pages":"2397-2414"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chronic Obstructive Pulmonary Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/COPD.S478634","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Chronic obstructive pulmonary disease (COPD) is a common and progressive disease that is influenced by both genetic and environmental factors, and genetic factors are important determinants of COPD. This study focuses on screening the best predictive models for assessing COPD-associated SNPs and then using the best models to predict potential risk factors for COPD.
Methods: Healthy subjects (n=290) and COPD patients (n=233) were included in this study, the Agena MassARRAY platform was applied to genotype the subjects for SNPs. The selected sample loci were first screened by logistic regression analysis, based on which the key SNPs were further screened by LASSO regression, RFE algorithm and Random Forest algorithm, and the ROC curves were plotted to assess the discriminative performance of the models to screen the best prediction model. Finally, the best prediction model was used for the prediction of risk factors for COPD.
Results: One-way logistic regression analysis screened 44 candidate SNPs from 146 SNPs, on the basis of which 44 SNPs were screened or feature ranked using LASSO model, RFE-Caret, RFE-Lda, RFE-lr, RFE-nb, RFE-rf, RFE-treebag algorithms and random forest model, respectively, and obtained ROC curve values of 0.809, 0.769, 0.798, 0.743, 0.686, 0.766, 0.743, 0.719, respectively, so we selected the lasso model as the best model, and then constructed a column-line graph model for the 25 SNPs screened in it, and found that rs12479210 might be the potential risk factors for COPD.
Conclusion: The LASSO model is the best predictive model for COPD and rs12479210 may be a potential risk locus for COPD.
期刊介绍:
An international, peer-reviewed journal of therapeutics and pharmacology focusing on concise rapid reporting of clinical studies and reviews in COPD. Special focus will be given to the pathophysiological processes underlying the disease, intervention programs, patient focused education, and self management protocols. This journal is directed at specialists and healthcare professionals