The Ghost in the Machine: Artificial Intelligence in Neurocardiology Will Advance Stroke Care.

IF 0.9 Q4 CLINICAL NEUROLOGY
Harneel Saini, David Z Rose
{"title":"The Ghost in the Machine: Artificial Intelligence in Neurocardiology Will Advance Stroke Care.","authors":"Harneel Saini, David Z Rose","doi":"10.1177/19418744241288887","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Innovations in artificial intelligence (AI) and machine learning (ML) are poised to transform stroke care, particularly for Neuro-Cardiac Programs (NCP) within both academic and community hospital systems. <b>Purpose:</b> Given AI's success in large-vessel occlusion (LVO) detection and perfusion mapping delivered to our smartphones, the next leap for this \"Ghost in the Machine\" technology seems to be into the world of NCP: AI-enhanced logistics have started to help with cardiac monitoring after cryptogenic, large-artery and small-vessel stroke, looking for atrial fibrillation (AF) with an insertable loop recorder (ILR) and/or external patch. <b>Results:</b> The 'CONNECT' study from UCSD demonstrated that AI can increase protocol efficiency and reduce patient wait-times for ILR; with more AF detected, fewer strokes may result as more patients receive anticoagulation or Left Atrial Appendage Closure (LAAC). <b>Conclusion:</b> Therefore, organically, the next AI and ML-enhanced NCP frontier may involve inter-departmental \"Shared Decision-Making\" (SDM) process with LAAC, and/or Patent Foramen Ovale (PFO), in appropriately selected patients. In this editorial, we explore AI's capability to disrupt current antiquated siloed communication tools, refine and streamline SDM processes and tailor patient-specific treatment plans, nevertheless advocating for intercalation of AI into NCP pathways in a secure, ethically-guided manner.</p>","PeriodicalId":46355,"journal":{"name":"Neurohospitalist","volume":" ","pages":"19418744241288887"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurohospitalist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19418744241288887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Innovations in artificial intelligence (AI) and machine learning (ML) are poised to transform stroke care, particularly for Neuro-Cardiac Programs (NCP) within both academic and community hospital systems. Purpose: Given AI's success in large-vessel occlusion (LVO) detection and perfusion mapping delivered to our smartphones, the next leap for this "Ghost in the Machine" technology seems to be into the world of NCP: AI-enhanced logistics have started to help with cardiac monitoring after cryptogenic, large-artery and small-vessel stroke, looking for atrial fibrillation (AF) with an insertable loop recorder (ILR) and/or external patch. Results: The 'CONNECT' study from UCSD demonstrated that AI can increase protocol efficiency and reduce patient wait-times for ILR; with more AF detected, fewer strokes may result as more patients receive anticoagulation or Left Atrial Appendage Closure (LAAC). Conclusion: Therefore, organically, the next AI and ML-enhanced NCP frontier may involve inter-departmental "Shared Decision-Making" (SDM) process with LAAC, and/or Patent Foramen Ovale (PFO), in appropriately selected patients. In this editorial, we explore AI's capability to disrupt current antiquated siloed communication tools, refine and streamline SDM processes and tailor patient-specific treatment plans, nevertheless advocating for intercalation of AI into NCP pathways in a secure, ethically-guided manner.

机器中的幽灵神经心脏病学中的人工智能将推进中风护理。
背景:人工智能(AI)和机器学习(ML)的创新有望改变中风护理,尤其是学术和社区医院系统中的神经-心脏项目(NCP)。目的:鉴于人工智能在大血管闭塞(LVO)检测和智能手机灌注图绘制方面的成功,这种 "机器中的幽灵 "技术的下一个飞跃似乎是进入 NCP 领域:人工智能增强型物流已开始帮助进行隐源性、大动脉和小血管卒中后的心脏监测,通过可插入环路记录仪(ILR)和/或外部贴片寻找心房颤动(AF)。研究结果加州大学旧金山分校的 "CONNECT "研究表明,人工智能可以提高方案效率,减少患者等待 ILR 的时间;随着检测到更多房颤,更多患者接受抗凝治疗或左心房阑尾闭合术 (LAAC) 可能会导致更少中风。结论因此,人工智能和 ML 增强型 NCP 的下一个前沿领域可能会有机地涉及跨部门 "共同决策"(SDM)流程,即在适当选择的患者中进行 LAAC 和/或腔孔关闭术(PFO)。在这篇社论中,我们探讨了人工智能在打破当前陈旧的孤立交流工具、完善和简化 SDM 流程以及量身定制患者特定治疗计划方面的能力,同时倡导在安全、道德指导的前提下将人工智能融入 NCP 途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurohospitalist
Neurohospitalist CLINICAL NEUROLOGY-
CiteScore
1.60
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信