Cindy Correa-Villa, Edilson Moreno-Cárdenas, Johannes de Bruijn
{"title":"Presence of lactic acid bacteria in hydrogen production by dark fermentation: competition or synergy.","authors":"Cindy Correa-Villa, Edilson Moreno-Cárdenas, Johannes de Bruijn","doi":"10.1007/s11274-024-04167-9","DOIUrl":null,"url":null,"abstract":"<p><p>Dark fermentation in mixed cultures has been extensively studied due to its great potential for sustainable hydrogen production from organic wastes. However, microbial composition, substrate competition, and inhibition by fermentation products can affect hydrogen yield and production rates. Lactic acid bacteria have been identified as the key organisms in this process. On one hand, lactic acid bacteria can efficiently compete for carbohydrate rich substrates, producing lactic acid and secreting bacteriocins that inhibit the growth of hydrogen-producing bacteria, thereby decreasing hydrogen production. On the other hand, due to their metabolic capacity and synergistic interactions with certain hydrogen-producing bacteria, they contribute positively in several ways, for example by providing lactic acid as a substrate for hydrogen generation. Analyzing different perspectives about the role of lactic acid bacteria in hydrogen production by dark fermentation, a literature review was done on this topic. This review article shows a comprehensive view to understand better the role of these bacteria and their influence on the process efficiency, either as competitors or as contributors to hydrogen production by dark fermentation.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 12","pages":"380"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04167-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dark fermentation in mixed cultures has been extensively studied due to its great potential for sustainable hydrogen production from organic wastes. However, microbial composition, substrate competition, and inhibition by fermentation products can affect hydrogen yield and production rates. Lactic acid bacteria have been identified as the key organisms in this process. On one hand, lactic acid bacteria can efficiently compete for carbohydrate rich substrates, producing lactic acid and secreting bacteriocins that inhibit the growth of hydrogen-producing bacteria, thereby decreasing hydrogen production. On the other hand, due to their metabolic capacity and synergistic interactions with certain hydrogen-producing bacteria, they contribute positively in several ways, for example by providing lactic acid as a substrate for hydrogen generation. Analyzing different perspectives about the role of lactic acid bacteria in hydrogen production by dark fermentation, a literature review was done on this topic. This review article shows a comprehensive view to understand better the role of these bacteria and their influence on the process efficiency, either as competitors or as contributors to hydrogen production by dark fermentation.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.