Anagha Krishnan, Lukas R Dahlin, Michael T Guarnieri, Joseph C Weissman, Matthew C Posewitz
{"title":"Small cells with big photosynthetic productivities: biotechnological potential of the Picochlorum genus.","authors":"Anagha Krishnan, Lukas R Dahlin, Michael T Guarnieri, Joseph C Weissman, Matthew C Posewitz","doi":"10.1016/j.tibtech.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>The Picochlorum genus is a distinctive eukaryotic green-algal clade that is the focus of several current biotechnological studies. It is capable of extremely rapid growth rates and has exceptional tolerances to high salinity, intense light, and elevated temperatures. Importantly, it has robust stability and high-biomass productivities in outdoor field trials in seawater. These features have propelled Picochlorum into the spotlight as a promising model for both fundamental and biotechnological research. Recently, several genetic tools, including genome editing, were developed for these algae, enabling insights into Picochlorum photophysiology and algal transformations for expanded capabilities. Here, we survey the Picochlorum genus, its genetic toolbox, recently characterized transformants, and discuss the commercial potential of Picochlorum as a salt-water photoautotrophic biocatalyst.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.10.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Picochlorum genus is a distinctive eukaryotic green-algal clade that is the focus of several current biotechnological studies. It is capable of extremely rapid growth rates and has exceptional tolerances to high salinity, intense light, and elevated temperatures. Importantly, it has robust stability and high-biomass productivities in outdoor field trials in seawater. These features have propelled Picochlorum into the spotlight as a promising model for both fundamental and biotechnological research. Recently, several genetic tools, including genome editing, were developed for these algae, enabling insights into Picochlorum photophysiology and algal transformations for expanded capabilities. Here, we survey the Picochlorum genus, its genetic toolbox, recently characterized transformants, and discuss the commercial potential of Picochlorum as a salt-water photoautotrophic biocatalyst.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).