Effects of extreme drought on the invasion dynamics of by non-native plants.

IF 17.3 1区 生物学 Q1 PLANT SCIENCES
Shareen K D Sanders, Mark van Kleunen, Eric Allan, Madhav P Thakur
{"title":"Effects of extreme drought on the invasion dynamics of by non-native plants.","authors":"Shareen K D Sanders, Mark van Kleunen, Eric Allan, Madhav P Thakur","doi":"10.1016/j.tplants.2024.10.009","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing frequency of extreme droughts poses significant challenges for predicting the invasion success (or failure) of non-native plant species. While current frameworks are primarily based on moderate droughts, the unique characteristics of extreme droughts necessitate re-evaluating our understanding of plant invasion during and after extreme droughts. Here, using core principles of community assembly and invasion biology, we discuss how the invasibility of non-native plants during and after extreme droughts differs due to: (i) differences in the ecological response of the native community, (ii) barriers at different invasion stages, and (iii) the traits of non-native plants. We incorporate ideas from current ecological theories of invasive success and suggest how drought-mediated invasion is influenced by biotic interactions in the native community.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.10.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing frequency of extreme droughts poses significant challenges for predicting the invasion success (or failure) of non-native plant species. While current frameworks are primarily based on moderate droughts, the unique characteristics of extreme droughts necessitate re-evaluating our understanding of plant invasion during and after extreme droughts. Here, using core principles of community assembly and invasion biology, we discuss how the invasibility of non-native plants during and after extreme droughts differs due to: (i) differences in the ecological response of the native community, (ii) barriers at different invasion stages, and (iii) the traits of non-native plants. We incorporate ideas from current ecological theories of invasive success and suggest how drought-mediated invasion is influenced by biotic interactions in the native community.

极端干旱对非本地植物入侵动态的影响。
极端干旱日益频繁,给预测非本地植物物种入侵的成功(或失败)带来了巨大挑战。虽然目前的框架主要基于中度干旱,但由于极端干旱的独特性,我们有必要重新评估对极端干旱期间和之后植物入侵的理解。在此,我们利用群落组合和入侵生物学的核心原理,讨论了非本地植物在极端干旱期间和之后的入侵性如何因以下原因而不同:(i) 本地群落生态反应的差异,(ii) 不同入侵阶段的障碍,以及 (iii) 非本地植物的特性。我们结合了当前入侵成功的生态学理论,并提出了干旱介导的入侵如何受到本地群落中生物相互作用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Plant Science
Trends in Plant Science 生物-植物科学
CiteScore
31.30
自引率
2.00%
发文量
196
审稿时长
6-12 weeks
期刊介绍: Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信