MEA-NAP: A flexible network analysis pipeline for neuronal 2D and 3D organoid multielectrode recordings.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-11-18 Epub Date: 2024-11-08 DOI:10.1016/j.crmeth.2024.100901
Timothy P H Sit, Rachael C Feord, Alexander W E Dunn, Jeremi Chabros, David Oluigbo, Hugo H Smith, Lance Burn, Elise Chang, Alessio Boschi, Yin Yuan, George M Gibbons, Mahsa Khayat-Khoei, Francesco De Angelis, Erik Hemberg, Martin Hemberg, Madeline A Lancaster, Andras Lakatos, Stephen J Eglen, Ole Paulsen, Susanna B Mierau
{"title":"MEA-NAP: A flexible network analysis pipeline for neuronal 2D and 3D organoid multielectrode recordings.","authors":"Timothy P H Sit, Rachael C Feord, Alexander W E Dunn, Jeremi Chabros, David Oluigbo, Hugo H Smith, Lance Burn, Elise Chang, Alessio Boschi, Yin Yuan, George M Gibbons, Mahsa Khayat-Khoei, Francesco De Angelis, Erik Hemberg, Martin Hemberg, Madeline A Lancaster, Andras Lakatos, Stephen J Eglen, Ole Paulsen, Susanna B Mierau","doi":"10.1016/j.crmeth.2024.100901","DOIUrl":null,"url":null,"abstract":"<p><p>Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and thus can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches. VIDEO ABSTRACT.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100901"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and thus can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches. VIDEO ABSTRACT.

MEA-NAP:用于神经元二维和三维类器官多电极记录的灵活网络分析管道
微电极阵列(MEA)记录通常用于比较神经元培养物的点燃率和爆发率。微电极阵列记录还能揭示微尺度的功能连接、拓扑结构和网络动力学--在跨空间尺度的大脑网络中看到的模式。在神经成像中,网络拓扑经常使用图论指标来描述。然而,很少有计算工具可用于分析来自 MEA 记录的微尺度大脑功能网络。在此,我们介绍一种 MATLAB MEA 网络分析管道(MEA-NAP),用于分析从单孔或多孔 MEA 采集的原始电压时间序列。三维人脑器官组织或二维人源或鼠类培养物的应用揭示了网络发展的差异,包括拓扑结构、节点制图和维度。MEA-NAP 结合了基于多单元模板的尖峰检测、用于确定重要功能连接的概率阈值以及用于比较网络的归一化技术。MEA-NAP 可识别药物扰动和/或致病突变的网络级效应,从而为揭示机理和筛选新的治疗方法提供一个转化平台。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信