TEA-GCN: Transformer-Enhanced Adaptive Graph Convolutional Network for Traffic Flow Forecasting.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-11-04 DOI:10.3390/s24217086
Xiaxia He, Wenhui Zhang, Xiaoyu Li, Xiaodan Zhang
{"title":"TEA-GCN: Transformer-Enhanced Adaptive Graph Convolutional Network for Traffic Flow Forecasting.","authors":"Xiaxia He, Wenhui Zhang, Xiaoyu Li, Xiaodan Zhang","doi":"10.3390/s24217086","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic flow forecasting is crucial for improving urban traffic management and reducing resource consumption. Accurate traffic conditions prediction requires capturing the complex spatial-temporal dependencies inherent in traffic data. Traditional spatial-temporal graph modeling methods often rely on fixed road network structures, failing to account for the dynamic spatial correlations that vary over time. To address this, we propose a Transformer-Enhanced Adaptive Graph Convolutional Network (TEA-GCN) that alternately learns temporal and spatial correlations in traffic data layer-by-layer. Specifically, we design an adaptive graph convolutional module to dynamically capture implicit road dependencies at different time levels and a local-global temporal attention module to simultaneously capture long-term and short-term temporal dependencies. Experimental results on two public traffic datasets demonstrate the effectiveness of the proposed model compared to other state-of-the-art traffic flow prediction methods.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217086","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic flow forecasting is crucial for improving urban traffic management and reducing resource consumption. Accurate traffic conditions prediction requires capturing the complex spatial-temporal dependencies inherent in traffic data. Traditional spatial-temporal graph modeling methods often rely on fixed road network structures, failing to account for the dynamic spatial correlations that vary over time. To address this, we propose a Transformer-Enhanced Adaptive Graph Convolutional Network (TEA-GCN) that alternately learns temporal and spatial correlations in traffic data layer-by-layer. Specifically, we design an adaptive graph convolutional module to dynamically capture implicit road dependencies at different time levels and a local-global temporal attention module to simultaneously capture long-term and short-term temporal dependencies. Experimental results on two public traffic datasets demonstrate the effectiveness of the proposed model compared to other state-of-the-art traffic flow prediction methods.

TEA-GCN:用于交通流量预测的变换器增强型自适应图卷积网络。
交通流量预测对于改善城市交通管理和减少资源消耗至关重要。准确的交通状况预测需要捕捉交通数据固有的复杂时空相关性。传统的时空图建模方法通常依赖于固定的路网结构,无法考虑随时间变化的动态空间相关性。为了解决这个问题,我们提出了一种变换器增强型自适应图卷积网络(TEA-GCN),它能逐层交替学习交通数据中的时间和空间相关性。具体来说,我们设计了一个自适应图卷积模块,用于动态捕捉不同时间层次的隐含道路依赖关系;还设计了一个局部-全局时间注意力模块,用于同时捕捉长期和短期的时间依赖关系。在两个公共交通数据集上的实验结果表明,与其他最先进的交通流量预测方法相比,所提出的模型非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信