Yibin He, Zhengrong Yuan, Xinhong Xia, Bo Yang, Huiting Wu, Wei Fu, Wenxuan Yao
{"title":"Local-Global Feature Adaptive Fusion Network for Building Crack Detection.","authors":"Yibin He, Zhengrong Yuan, Xinhong Xia, Bo Yang, Huiting Wu, Wei Fu, Wenxuan Yao","doi":"10.3390/s24217076","DOIUrl":null,"url":null,"abstract":"<p><p>Cracks represent one of the most common types of damage in building structures and it is crucial to detect cracks in a timely manner to maintain the safety of the buildings. In general, tiny cracks require focusing on local detail information while complex long cracks and cracks similar to the background require more global features for detection. Therefore, it is necessary for crack detection to effectively integrate local and global information. Focusing on this, a local-global feature adaptive fusion network (LGFAF-Net) is proposed. Specifically, we introduce the VMamba encoder as the global feature extraction branch to capture global long-range dependencies. To enhance the ability of the network to acquire detailed information, the residual network is added as another local feature extraction branch, forming a dual-encoding network to enhance the performance of crack detection. In addition, a multi-feature adaptive fusion (MFAF) module is proposed to integrate local and global features from different branches and facilitate representative feature learning. Furthermore, we propose a building exterior wall crack dataset (BEWC) captured by unmanned aerial vehicles (UAVs) to evaluate the performance of the proposed method used to identify wall cracks. Other widely used public crack datasets are also utilized to verify the generalization of the method. Extensive experiments performed on three crack datasets demonstrate the effectiveness and superiority of the proposed method.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217076","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cracks represent one of the most common types of damage in building structures and it is crucial to detect cracks in a timely manner to maintain the safety of the buildings. In general, tiny cracks require focusing on local detail information while complex long cracks and cracks similar to the background require more global features for detection. Therefore, it is necessary for crack detection to effectively integrate local and global information. Focusing on this, a local-global feature adaptive fusion network (LGFAF-Net) is proposed. Specifically, we introduce the VMamba encoder as the global feature extraction branch to capture global long-range dependencies. To enhance the ability of the network to acquire detailed information, the residual network is added as another local feature extraction branch, forming a dual-encoding network to enhance the performance of crack detection. In addition, a multi-feature adaptive fusion (MFAF) module is proposed to integrate local and global features from different branches and facilitate representative feature learning. Furthermore, we propose a building exterior wall crack dataset (BEWC) captured by unmanned aerial vehicles (UAVs) to evaluate the performance of the proposed method used to identify wall cracks. Other widely used public crack datasets are also utilized to verify the generalization of the method. Extensive experiments performed on three crack datasets demonstrate the effectiveness and superiority of the proposed method.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.