{"title":"Isotopic and Geophysical Investigations of Groundwater in Laiyuan Basin, China.","authors":"Weiqiang Wang, Zilong Meng, Chenglong Wang, Jianye Gui","doi":"10.3390/s24217001","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of each aquifer is still uncertain. This paper systematically conducts research on the characteristics of hydrogen and oxygen isotopes, and combines magnetotelluric impedance tensor decomposition and two-dimensional fine inversion technology to carry out fine exploration of the strata and structures in the Laiyuan Basin, as well as comprehensive characteristics of groundwater migration and replenishment. The results indicate the following: (i) The hydrogen and oxygen values all fall near the local meteoric water line, indicating that precipitation is the main groundwater recharge source. (ii) The excess deuterium decreased gradually from karst mountain to basin, and karst water and pore water experienced different flow processes. (iii) The structure characteristics of three main runoff channels are described by MT fine processing and inversion techniques. Finally, it is concluded that limestone water moved from the recharge to the discharge area, mixed with the deep dolomite water along the fault under the control of fault F2, and eventually rose to the surface of the unconsolidated sediment blocked by fault F1 to emerge into an ascending spring.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217001","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the complex intersection and control of multiple structural systems, the hydrogeological conditions of the Laiyuan Basin in China are complex. The depth of research on the relationship between geological structure and groundwater migration needs to be improved. The supply relationship of each aquifer is still uncertain. This paper systematically conducts research on the characteristics of hydrogen and oxygen isotopes, and combines magnetotelluric impedance tensor decomposition and two-dimensional fine inversion technology to carry out fine exploration of the strata and structures in the Laiyuan Basin, as well as comprehensive characteristics of groundwater migration and replenishment. The results indicate the following: (i) The hydrogen and oxygen values all fall near the local meteoric water line, indicating that precipitation is the main groundwater recharge source. (ii) The excess deuterium decreased gradually from karst mountain to basin, and karst water and pore water experienced different flow processes. (iii) The structure characteristics of three main runoff channels are described by MT fine processing and inversion techniques. Finally, it is concluded that limestone water moved from the recharge to the discharge area, mixed with the deep dolomite water along the fault under the control of fault F2, and eventually rose to the surface of the unconsolidated sediment blocked by fault F1 to emerge into an ascending spring.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.