Deep Learning Approaches for the Assessment of Germinal Matrix Hemorrhage Using Neonatal Head Ultrasound.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217052
Nehad M Ibrahim, Hadeel Alanize, Lara Alqahtani, Lama J Alqahtani, Raghad Alabssi, Wadha Alsindi, Haila Alabssi, Afnan AlMuhanna, Hanadi Althani
{"title":"Deep Learning Approaches for the Assessment of Germinal Matrix Hemorrhage Using Neonatal Head Ultrasound.","authors":"Nehad M Ibrahim, Hadeel Alanize, Lara Alqahtani, Lama J Alqahtani, Raghad Alabssi, Wadha Alsindi, Haila Alabssi, Afnan AlMuhanna, Hanadi Althani","doi":"10.3390/s24217052","DOIUrl":null,"url":null,"abstract":"<p><p>Germinal matrix hemorrhage (GMH) is a critical condition affecting premature infants, commonly diagnosed through cranial ultrasound imaging. This study presents an advanced deep learning approach for automated GMH grading using the YOLOv8 model. By analyzing a dataset of 586 infants, we classified ultrasound images into five distinct categories: Normal, Grade 1, Grade 2, Grade 3, and Grade 4. Utilizing transfer learning and data augmentation techniques, the YOLOv8 model achieved exceptional performance, with a mean average precision (mAP50) of 0.979 and a mAP50-95 of 0.724. These results indicate that the YOLOv8 model can significantly enhance the accuracy and efficiency of GMH diagnosis, providing a valuable tool to support radiologists in clinical settings.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217052","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Germinal matrix hemorrhage (GMH) is a critical condition affecting premature infants, commonly diagnosed through cranial ultrasound imaging. This study presents an advanced deep learning approach for automated GMH grading using the YOLOv8 model. By analyzing a dataset of 586 infants, we classified ultrasound images into five distinct categories: Normal, Grade 1, Grade 2, Grade 3, and Grade 4. Utilizing transfer learning and data augmentation techniques, the YOLOv8 model achieved exceptional performance, with a mean average precision (mAP50) of 0.979 and a mAP50-95 of 0.724. These results indicate that the YOLOv8 model can significantly enhance the accuracy and efficiency of GMH diagnosis, providing a valuable tool to support radiologists in clinical settings.

利用新生儿头部超声评估胚芽基质出血的深度学习方法
胚芽基质出血(GMH)是早产儿的一种危重症,通常通过头颅超声成像诊断。本研究提出了一种先进的深度学习方法,利用 YOLOv8 模型对 GMH 进行自动分级。通过分析 586 个婴儿的数据集,我们将超声图像分为五个不同的类别:正常、1 级、2 级、3 级和 4 级。利用迁移学习和数据增强技术,YOLOv8 模型取得了优异的性能,平均精确度 (mAP50) 为 0.979,mAP50-95 为 0.724。这些结果表明,YOLOv8 模型可以显著提高 GMH 诊断的准确性和效率,为放射科医生在临床环境中提供有价值的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信