FCSwinU: Fourier Convolutions and Swin Transformer UNet for Hyperspectral and Multispectral Image Fusion.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217023
Rumei Li, Liyan Zhang, Zun Wang, Xiaojuan Li
{"title":"FCSwinU: Fourier Convolutions and Swin Transformer UNet for Hyperspectral and Multispectral Image Fusion.","authors":"Rumei Li, Liyan Zhang, Zun Wang, Xiaojuan Li","doi":"10.3390/s24217023","DOIUrl":null,"url":null,"abstract":"<p><p>The fusion of low-resolution hyperspectral images (LR-HSI) with high-resolution multispectral images (HR-MSI) provides a cost-effective approach to obtaining high-resolution hyperspectral images (HR-HSI). Existing methods primarily based on convolutional neural networks (CNNs) struggle to capture global features and do not adequately address the significant scale and spectral resolution differences between LR-HSI and HR-MSI. To tackle these challenges, our novel FCSwinU network leverages the spectral fast Fourier convolution (SFFC) module for spectral feature extraction and utilizes the Swin Transformer's self-attention mechanism for multi-scale global feature fusion. FCSwinU employs a UNet-like encoder-decoder framework to effectively merge spatiospectral features. The encoder integrates the Swin Transformer feature abstraction module (SwinTFAM) to encode pixel correlations and perform multi-scale transformations, facilitating the adaptive fusion of hyperspectral and multispectral data. The decoder then employs the Swin Transformer feature reconstruction module (SwinTFRM) to reconstruct the fused features, restoring the original image dimensions and ensuring the precise recovery of spatial and spectral details. Experimental results from three benchmark datasets and a real-world dataset robustly validate the superior performance of our method in both visual representation and quantitative assessment compared to existing fusion methods.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217023","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fusion of low-resolution hyperspectral images (LR-HSI) with high-resolution multispectral images (HR-MSI) provides a cost-effective approach to obtaining high-resolution hyperspectral images (HR-HSI). Existing methods primarily based on convolutional neural networks (CNNs) struggle to capture global features and do not adequately address the significant scale and spectral resolution differences between LR-HSI and HR-MSI. To tackle these challenges, our novel FCSwinU network leverages the spectral fast Fourier convolution (SFFC) module for spectral feature extraction and utilizes the Swin Transformer's self-attention mechanism for multi-scale global feature fusion. FCSwinU employs a UNet-like encoder-decoder framework to effectively merge spatiospectral features. The encoder integrates the Swin Transformer feature abstraction module (SwinTFAM) to encode pixel correlations and perform multi-scale transformations, facilitating the adaptive fusion of hyperspectral and multispectral data. The decoder then employs the Swin Transformer feature reconstruction module (SwinTFRM) to reconstruct the fused features, restoring the original image dimensions and ensuring the precise recovery of spatial and spectral details. Experimental results from three benchmark datasets and a real-world dataset robustly validate the superior performance of our method in both visual representation and quantitative assessment compared to existing fusion methods.

FCSwinU:用于高光谱和多光谱图像融合的傅立叶卷积和斯温变换器 UNet。
低分辨率高光谱图像(LR-HSI)与高分辨率多光谱图像(HR-MSI)的融合为获取高分辨率高光谱图像(HR-HSI)提供了一种具有成本效益的方法。现有方法主要基于卷积神经网络(CNN),难以捕捉全局特征,也无法充分解决 LR-HSI 和 HR-MSI 在尺度和光谱分辨率上的显著差异。为了应对这些挑战,我们的新型 FCSwinU 网络利用光谱快速傅立叶卷积(SFFC)模块进行光谱特征提取,并利用 Swin 变换器的自注意机制进行多尺度全局特征融合。FCSwinU 采用类似 UNet 的编码器-解码器框架来有效融合空间光谱特征。编码器集成了 Swin Transformer 特征抽象模块(SwinTFAM),可对像素相关性进行编码并执行多尺度变换,从而促进高光谱和多光谱数据的自适应融合。然后,解码器利用 Swin Transformer 特征重建模块(SwinTFRM)重建融合特征,恢复原始图像尺寸,确保精确恢复空间和光谱细节。来自三个基准数据集和一个真实世界数据集的实验结果有力地验证了我们的方法与现有的融合方法相比,在视觉表现和定量评估方面都具有卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信