The Excellent Chemical Interaction Properties of Poloxamer and Pullulan with Alpha Mangostin on Amorphous Solid Dispersion System: Molecular Dynamics Simulation.
Agus Rusdin, Muchtaridi Muchtaridi, Sandra Megantara, Yoga Windhu Wardhana, Taufik Muhammad Fakih, Arif Budiman
{"title":"The Excellent Chemical Interaction Properties of Poloxamer and Pullulan with Alpha Mangostin on Amorphous Solid Dispersion System: Molecular Dynamics Simulation.","authors":"Agus Rusdin, Muchtaridi Muchtaridi, Sandra Megantara, Yoga Windhu Wardhana, Taufik Muhammad Fakih, Arif Budiman","doi":"10.3390/polym16213065","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alpha mangostin (AM) has demonstrated significant potential as an anticancer agent, owing to its potent bioactivity. However, its clinical application is limited by poor solubility, which hampers its bioavailability and effectiveness. Amorphous solid dispersion (ASD) presents a promising technique to enhance the solubility and stability of AM. Molecular dynamics simulation offers a rapid, efficient, and precise method to evaluate and optimize ASD formulations before production.</p><p><strong>Aim of study: </strong>In this study, we conducted molecular dynamics simulations to explore the ASD development of AM with poloxamer and pullulan.</p><p><strong>Result: </strong>Our results revealed that AM-poloxamer complexes exhibit superior interaction characteristics compared to AM-pullulan, with a 1:5 ratio of AM to poloxamer and a cooling rate of 1 °C/ns demonstrating the most favorable outcomes. This combination showed enhanced hydrogen bonding, a more compact molecular structure, and higher stability, making it the optimal choice for ASD formulation.</p><p><strong>Conclusion: </strong>The integration of molecular dynamics simulation into ASD development significantly accelerates the formulation process and provides critical insights into achieving a stable and effective AM dispersion. The AM-poloxamer complex, particularly at a 1:5 ratio with a 1 °C/ns cooling rate, offers the best potential for improving AM solubility and therapeutic efficacy.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213065","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Alpha mangostin (AM) has demonstrated significant potential as an anticancer agent, owing to its potent bioactivity. However, its clinical application is limited by poor solubility, which hampers its bioavailability and effectiveness. Amorphous solid dispersion (ASD) presents a promising technique to enhance the solubility and stability of AM. Molecular dynamics simulation offers a rapid, efficient, and precise method to evaluate and optimize ASD formulations before production.
Aim of study: In this study, we conducted molecular dynamics simulations to explore the ASD development of AM with poloxamer and pullulan.
Result: Our results revealed that AM-poloxamer complexes exhibit superior interaction characteristics compared to AM-pullulan, with a 1:5 ratio of AM to poloxamer and a cooling rate of 1 °C/ns demonstrating the most favorable outcomes. This combination showed enhanced hydrogen bonding, a more compact molecular structure, and higher stability, making it the optimal choice for ASD formulation.
Conclusion: The integration of molecular dynamics simulation into ASD development significantly accelerates the formulation process and provides critical insights into achieving a stable and effective AM dispersion. The AM-poloxamer complex, particularly at a 1:5 ratio with a 1 °C/ns cooling rate, offers the best potential for improving AM solubility and therapeutic efficacy.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.