{"title":"Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria.","authors":"Wenfeng Chen, Sha Wan, Hongxin Lin, Shimi Li, Anhua Deng, Lihui Feng, Yangfan Xu, Xu Zhang, Zhen Hu, Fang Xu, Kun Yan","doi":"10.3390/polym16213027","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-based wastewater disinfection, which is typically performed using chemical oxidation or irradiation, can result in various toxic byproducts and corrosion under harsh environments. This study introduces a robust bio-adsorbent prepared from naturally abundant polydopamine-modified medical stone (MS@PDA) for the high-efficiency removal of bacteria from water. The PDA nanocoating can be easily applied through an in situ self-polymerization process, resulting in a considerably high bacterial adsorption capacity of 6.6 k pcs mm<sup>-2</sup> for <i>Staphylococcus aureus</i>. A cyclic flow-through dynamic filtration and a disinfection system was implemented using an MS@PDA porous filter with an average pore size of 21.8 ± 1.4 µm and porosity of ~83%, achieving a 5.2-6.0-fold enhancement in the cumulative removal efficiency for MS@PDA<sub>2</sub>. The underlying mechanisms were elucidated through the synergistic effects of interfacial bio-adsorption and size-dependent interception. Notably, the bacteria captured on the surface could be killed using the enhanced photothermal effects of the PDA nanocoating and the inherent antimicrobial properties of the mineral stone. Thus, this study not only provides a new type of advanced bio-adsorbent but also provides new perspectives on an efficient and cost-effective approach for sustainable wastewater treatment.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer-based wastewater disinfection, which is typically performed using chemical oxidation or irradiation, can result in various toxic byproducts and corrosion under harsh environments. This study introduces a robust bio-adsorbent prepared from naturally abundant polydopamine-modified medical stone (MS@PDA) for the high-efficiency removal of bacteria from water. The PDA nanocoating can be easily applied through an in situ self-polymerization process, resulting in a considerably high bacterial adsorption capacity of 6.6 k pcs mm-2 for Staphylococcus aureus. A cyclic flow-through dynamic filtration and a disinfection system was implemented using an MS@PDA porous filter with an average pore size of 21.8 ± 1.4 µm and porosity of ~83%, achieving a 5.2-6.0-fold enhancement in the cumulative removal efficiency for MS@PDA2. The underlying mechanisms were elucidated through the synergistic effects of interfacial bio-adsorption and size-dependent interception. Notably, the bacteria captured on the surface could be killed using the enhanced photothermal effects of the PDA nanocoating and the inherent antimicrobial properties of the mineral stone. Thus, this study not only provides a new type of advanced bio-adsorbent but also provides new perspectives on an efficient and cost-effective approach for sustainable wastewater treatment.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.