A Study of Mixed Non-Motorized Traffic Flow Characteristics and Capacity Based on Multi-Source Video Data.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217045
Guobin Gu, Xin Sun, Benxiao Lou, Xiang Wang, Bingheng Yang, Jianqiu Chen, Dan Zhou, Shiqian Huang, Qingwei Hu, Chun Bao
{"title":"A Study of Mixed Non-Motorized Traffic Flow Characteristics and Capacity Based on Multi-Source Video Data.","authors":"Guobin Gu, Xin Sun, Benxiao Lou, Xiang Wang, Bingheng Yang, Jianqiu Chen, Dan Zhou, Shiqian Huang, Qingwei Hu, Chun Bao","doi":"10.3390/s24217045","DOIUrl":null,"url":null,"abstract":"<p><p>Mixed non-motorized traffic is largely unaffected by motor vehicle congestion, offering high accessibility and convenience, and thus serving as a primary mode of \"last-mile\" transportation in urban areas. To advance stochastic capacity estimation methods and provide reliable assessments of non-motorized roadway capacity, this study proposes a stochastic capacity estimation model based on power spectral analysis. The model treats discrete traffic flow data as a time-series signal and employs a stochastic signal parameter model to fit stochastic traffic flow patterns. Initially, UAVs and video cameras are used to capture videos of mixed non-motorized traffic flow. The video data were processed with an image detection algorithm based on the YOLO convolutional neural network and a video tracking algorithm using the DeepSORT multi-target tracking model, extracting data on traffic flow, density, speed, and rider characteristics. Then, the autocorrelation and partial autocorrelation functions of the signal are employed to distinguish among four classical stochastic signal parameter models. The model parameters are optimized by minimizing the AIC information criterion to identify the model with optimal fit. The fitted parametric models are analyzed by transforming them from the time domain to the frequency domain, and the power spectrum estimation model is then calculated. The experimental results show that the stochastic capacity model yields a pure EV capacity of 2060-3297 bikes/(h·m) and a pure bicycle capacity of 1538-2460 bikes/(h·m). The density-flow model calculates a pure EV capacity of 2349-2897 bikes/(h·m) and a pure bicycle capacity of 1753-2173 bikes/(h·m). The minimal difference between these estimates validates the effectiveness of the proposed model. These findings hold practical significance in addressing urban road congestion.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217045","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed non-motorized traffic is largely unaffected by motor vehicle congestion, offering high accessibility and convenience, and thus serving as a primary mode of "last-mile" transportation in urban areas. To advance stochastic capacity estimation methods and provide reliable assessments of non-motorized roadway capacity, this study proposes a stochastic capacity estimation model based on power spectral analysis. The model treats discrete traffic flow data as a time-series signal and employs a stochastic signal parameter model to fit stochastic traffic flow patterns. Initially, UAVs and video cameras are used to capture videos of mixed non-motorized traffic flow. The video data were processed with an image detection algorithm based on the YOLO convolutional neural network and a video tracking algorithm using the DeepSORT multi-target tracking model, extracting data on traffic flow, density, speed, and rider characteristics. Then, the autocorrelation and partial autocorrelation functions of the signal are employed to distinguish among four classical stochastic signal parameter models. The model parameters are optimized by minimizing the AIC information criterion to identify the model with optimal fit. The fitted parametric models are analyzed by transforming them from the time domain to the frequency domain, and the power spectrum estimation model is then calculated. The experimental results show that the stochastic capacity model yields a pure EV capacity of 2060-3297 bikes/(h·m) and a pure bicycle capacity of 1538-2460 bikes/(h·m). The density-flow model calculates a pure EV capacity of 2349-2897 bikes/(h·m) and a pure bicycle capacity of 1753-2173 bikes/(h·m). The minimal difference between these estimates validates the effectiveness of the proposed model. These findings hold practical significance in addressing urban road congestion.

基于多源视频数据的混合非机动车交通流特征和容量研究。
非机动车混合交通在很大程度上不受机动车拥堵的影响,具有较高的可达性和便利性,因此成为城市地区 "最后一英里 "交通的主要模式。为了推进随机通行能力估算方法,提供可靠的非机动车道路通行能力评估,本研究提出了一种基于功率谱分析的随机通行能力估算模型。该模型将离散交通流数据视为时间序列信号,并采用随机信号参数模型来拟合随机交通流模式。最初,使用无人机和摄像机捕捉非机动车混合交通流的视频。视频数据采用基于 YOLO 卷积神经网络的图像检测算法和使用 DeepSORT 多目标跟踪模型的视频跟踪算法进行处理,提取交通流量、密度、速度和骑行者特征等数据。然后,利用信号的自相关函数和偏自相关函数来区分四种经典的随机信号参数模型。通过最小化 AIC 信息准则对模型参数进行优化,以确定最佳拟合模型。通过将拟合的参数模型从时域转换到频域进行分析,然后计算功率谱估计模型。实验结果表明,随机容量模型得出的纯电动车容量为 2060-3297 辆/(小时-米),纯自行车容量为 1538-2460 辆/(小时-米)。密度流模型计算出的纯电动车容量为 2349-2897 辆/(小时-米),纯自行车容量为 1753-2173 辆/(小时-米)。这两个估算值之间的微小差异验证了所提模型的有效性。这些发现对于解决城市道路拥堵问题具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信