Synthesis methods of Mg-based scaffolds and their applications in tissue engineering: A review.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Hurieh Mohammadzadeh, Robabeh Jafari, Behnam Doudkanlouy Milan, Mohammad Jangju
{"title":"Synthesis methods of Mg-based scaffolds and their applications in tissue engineering: A review.","authors":"Hurieh Mohammadzadeh, Robabeh Jafari, Behnam Doudkanlouy Milan, Mohammad Jangju","doi":"10.1177/09544119241289504","DOIUrl":null,"url":null,"abstract":"<p><p>Repair and regeneration of damaged tissues due to disease and accidents have become a severe challenge to tissue engineers and researchers. In recent years, biocompatible metal materials such as stainless steels, cobalt alloys, titanium alloys, tantalum alloys, nitinol, and Mg alloys have been studied for tissue engineering applications; as suitable candidates in orthopedic and dentistry implants. These materials and their alloys are used for load-bearing and physiological roles in biological applications. Due to the suitable conditions provided by a porous material, many studies have been performed on the porous implants, including Mg-based scaffolds. Mg alloy scaffolds are attractive due to some outstanding features and susceptibilities, such as providing a cell matrix for cell proliferation, migration, and regeneration, providing metabolic substances for bone tissue growth, biocompatibility, good biodegradability, elastic modulus comparable to the natural bone, etc. Accordingly, in the present study, a general classification of all the production methods of Mg-based scaffolds is provided. Strengths and weaknesses, the effect of the production approach on the final properties of scaffolds, including mechanical and biological capabilities, and the impact of alloying elements and process parameters have been reviewed, and discussed. Finally, the manufacturing methods have been compared and the upcoming challenges have been stated.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241289504","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Repair and regeneration of damaged tissues due to disease and accidents have become a severe challenge to tissue engineers and researchers. In recent years, biocompatible metal materials such as stainless steels, cobalt alloys, titanium alloys, tantalum alloys, nitinol, and Mg alloys have been studied for tissue engineering applications; as suitable candidates in orthopedic and dentistry implants. These materials and their alloys are used for load-bearing and physiological roles in biological applications. Due to the suitable conditions provided by a porous material, many studies have been performed on the porous implants, including Mg-based scaffolds. Mg alloy scaffolds are attractive due to some outstanding features and susceptibilities, such as providing a cell matrix for cell proliferation, migration, and regeneration, providing metabolic substances for bone tissue growth, biocompatibility, good biodegradability, elastic modulus comparable to the natural bone, etc. Accordingly, in the present study, a general classification of all the production methods of Mg-based scaffolds is provided. Strengths and weaknesses, the effect of the production approach on the final properties of scaffolds, including mechanical and biological capabilities, and the impact of alloying elements and process parameters have been reviewed, and discussed. Finally, the manufacturing methods have been compared and the upcoming challenges have been stated.

镁基支架的合成方法及其在组织工程中的应用:综述。
修复和再生因疾病和意外事故而受损的组织已成为组织工程师和研究人员面临的严峻挑战。近年来,生物相容性金属材料,如不锈钢、钴合金、钛合金、钽合金、镍钛诺和镁合金,作为整形外科和牙科植入物的合适候选材料,已被研究用于组织工程应用。这些材料及其合金可用于生物应用中的承重和生理作用。由于多孔材料提供了合适的条件,许多关于多孔植入物(包括镁基支架)的研究已经展开。镁合金支架具有一些突出的特点和易感性,如为细胞增殖、迁移和再生提供细胞基质,为骨组织生长提供代谢物质,具有生物相容性、良好的生物降解性、与天然骨相当的弹性模量等,因此很有吸引力。因此,本研究对镁基支架的所有生产方法进行了总体分类。研究回顾并讨论了生产方法的优缺点、生产方法对支架最终性能(包括机械性能和生物性能)的影响,以及合金元素和工艺参数的影响。最后,比较了各种制造方法,并指出了即将面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信