{"title":"A Comprehensive Review on the Incremental Sheet Forming of Polycarbonate.","authors":"Antonio Formisano, Massimo Durante","doi":"10.3390/polym16213098","DOIUrl":null,"url":null,"abstract":"<p><p>Incremental sheet forming has emerged as an excellent alternative to other material forming procedures, incrementally deforming flat metal sheets into complex three-dimensional profiles. The main characteristics of this process are its versatility and cost-effectiveness; additionally, it allows for greater formability compared to conventional sheet forming processes. Recently, its application has been extended to polymers and composites. The following review aims to present the current state of the art in the incremental sheet forming of polycarbonate, an outstanding engineering plastic, beginning with initial studies on the feasibility of this process for polymers. Attention is given to the advantages, drawbacks, and main applications of incrementally formed polycarbonate sheets, as well as the influence of process parameters and toolpath strategies on features such as formability, forming forces, deformation and failure mechanisms, geometric accuracy, surface quality, etc. Additionally, new hybrid forming methods for process optimisation are presented. Finally, a discussion is provided on the technical challenges and future research directions for incremental sheet forming of polycarbonate and, more generally, thermoplastics. Thus, this review aims to offer an extensive overview of the incremental forming of polycarbonate sheets, useful to both academic and industrial researchers working on this topic.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213098","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Incremental sheet forming has emerged as an excellent alternative to other material forming procedures, incrementally deforming flat metal sheets into complex three-dimensional profiles. The main characteristics of this process are its versatility and cost-effectiveness; additionally, it allows for greater formability compared to conventional sheet forming processes. Recently, its application has been extended to polymers and composites. The following review aims to present the current state of the art in the incremental sheet forming of polycarbonate, an outstanding engineering plastic, beginning with initial studies on the feasibility of this process for polymers. Attention is given to the advantages, drawbacks, and main applications of incrementally formed polycarbonate sheets, as well as the influence of process parameters and toolpath strategies on features such as formability, forming forces, deformation and failure mechanisms, geometric accuracy, surface quality, etc. Additionally, new hybrid forming methods for process optimisation are presented. Finally, a discussion is provided on the technical challenges and future research directions for incremental sheet forming of polycarbonate and, more generally, thermoplastics. Thus, this review aims to offer an extensive overview of the incremental forming of polycarbonate sheets, useful to both academic and industrial researchers working on this topic.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.