Maryam Azarian , Marzieh Ramezani Farani , William C. Cho , Fereshteh Asgharzadeh , Yu-jeong Yang , Maryam Moradi Binabaj , Murtaza M. Tambuwala , Najma Farahani , Kiavash Hushmandi , Yun Suk Huh
{"title":"Advancements in colorectal cancer treatment: The role of metal-based and inorganic nanoparticles in modern therapeutic approaches","authors":"Maryam Azarian , Marzieh Ramezani Farani , William C. Cho , Fereshteh Asgharzadeh , Yu-jeong Yang , Maryam Moradi Binabaj , Murtaza M. Tambuwala , Najma Farahani , Kiavash Hushmandi , Yun Suk Huh","doi":"10.1016/j.prp.2024.155706","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"264 ","pages":"Article 155706"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824006174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in the treatment of colorectal cancer (CRC) have highlighted the integration of metal-based nanoparticles into sophisticated therapeutic strategies. This examination delves into the potential applications of these nanoparticles, particularly in augmenting the effectiveness of photodynamic therapy (PDT) and targeted drug delivery systems. Metal nanoparticles, such as gold (Au), silver (Ag), and copper (Cu), possess distinctive characteristics that make them valuable in cancer treatment. Beyond their role as drug carriers, these nanoparticles actively engage in therapeutic processes like apoptosis induction, enhancement of photothermal effects, and generation of reactive oxygen species (ROS) crucial for tumor cell eradication. The utilization of metal nanoparticles in CRC therapy addresses significant challenges encountered with conventional treatments, such as drug resistance and systemic toxicity. For example, engineered Au nanoparticles enable targeted drug delivery, reducing off-target effects and maximizing therapeutic efficacy against cancerous cells. Their capacity to absorb near-infrared light allows for localized hyperthermia, effectively eliminating cancerous tissues. Similarly, Cu nanoparticles exhibit potential in overcoming drug resistance by enhancing the efficacy of traditional chemotherapeutic agents through ROS production and improved drug stability. This review underscores the significance of precision medicine in CRC care. Through the integration of metal nanoparticles alongside complementary biomarkers and personalized treatment strategies, a more efficient and tailored therapeutic approach can be achieved. The synergistic effect of PDT in combination with metal nanoparticles introduces a novel methodology to CRC treatment, offering a dual-action mechanism that enhances tumor targeting while minimizing undesirable effects. In conclusion, the integration of metal-based nanoparticles in CRC therapy marks a significant progress in oncological treatments. Continued research is imperative to comprehensively grasp their mechanisms, optimize their clinical utility, and address potential safety considerations. This thorough assessment aims to pave the way for future advancements in CRC treatment through the application of nanotechnology and personalized medicine strategies.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.