Optoelectronic nonlinear Softmax operator based on diffractive neural networks.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-07-15 DOI:10.1364/OE.527843
Ziyu Zhan, Hao Wang, Qiang Liu, Xing Fu
{"title":"Optoelectronic nonlinear Softmax operator based on diffractive neural networks.","authors":"Ziyu Zhan, Hao Wang, Qiang Liu, Xing Fu","doi":"10.1364/OE.527843","DOIUrl":null,"url":null,"abstract":"<p><p>Softmax, a pervasive nonlinear operation, plays a pivotal role in numerous statistics and deep learning (DL) models such as ChatGPT. To compute it is expensive especially for at-scale models. Several software and hardware speed-up strategies are proposed but still suffer from low efficiency, poor scalability. Here we propose a photonic-computing solution including massive programmable neurons that is capable to execute such operation in an accurate, computation-efficient, robust and scalable manner. Experimental results show our diffraction-based computing system exhibits salient generalization ability in diverse artificial and real-world tasks (mean square error <10<sup>-5</sup>). We further analyze its performances against several realistic restricted factors. Such flexible system not only contributes to optimizing Softmax operation mechanism but may provide an inspiration of manufacturing a plug-and-play module for general optoelectronic accelerators.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26458-26469"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.527843","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Softmax, a pervasive nonlinear operation, plays a pivotal role in numerous statistics and deep learning (DL) models such as ChatGPT. To compute it is expensive especially for at-scale models. Several software and hardware speed-up strategies are proposed but still suffer from low efficiency, poor scalability. Here we propose a photonic-computing solution including massive programmable neurons that is capable to execute such operation in an accurate, computation-efficient, robust and scalable manner. Experimental results show our diffraction-based computing system exhibits salient generalization ability in diverse artificial and real-world tasks (mean square error <10-5). We further analyze its performances against several realistic restricted factors. Such flexible system not only contributes to optimizing Softmax operation mechanism but may provide an inspiration of manufacturing a plug-and-play module for general optoelectronic accelerators.

基于衍射神经网络的光电非线性 Softmax 算子。
Softmax 是一种普遍存在的非线性运算,在许多统计和深度学习(DL)模型(如 ChatGPT)中发挥着举足轻重的作用。计算它的成本很高,尤其是对大规模模型而言。人们提出了一些软件和硬件加速策略,但仍存在效率低、可扩展性差等问题。在这里,我们提出了一种光子计算解决方案,包括大规模可编程神经元,能够以精确、计算高效、稳健和可扩展的方式执行此类操作。实验结果表明,我们基于衍射的计算系统在各种人工和现实世界任务中表现出突出的泛化能力(均方误差-5)。我们进一步分析了该系统在多个现实限制因素下的表现。这种灵活的系统不仅有助于优化 Softmax 的运行机制,还能为制造通用光电加速器的即插即用模块提供灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信