A Novel Robust Position Integration Optimization-Based Alignment Method for In-Flight Coarse Alignment.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217000
Xiaoge Ning, Jixun Huang, Jianxun Li
{"title":"A Novel Robust Position Integration Optimization-Based Alignment Method for In-Flight Coarse Alignment.","authors":"Xiaoge Ning, Jixun Huang, Jianxun Li","doi":"10.3390/s24217000","DOIUrl":null,"url":null,"abstract":"<p><p>In-flight alignment is a critical milestone for inertial navigation system/global navigation satellite system (INS/GNSS) applications in unmanned aerial vehicles (UAVs). The traditional position integration formula for in-flight coarse alignment requires the GNSS velocity data to be valid throughout the alignment period, which greatly limits the engineering applicability of the method. In this paper, a new robust position integration optimization-based alignment (OBA) method for in-flight coarse alignment is presented to solve the problem of in-flight alignment under a prolonged ineffective GNSS. In this methodology, to achieve a higher alignment accuracy in case the GNSS is not effective throughout the alignment period, the integration of GNSS velocity into the local-level navigation frame is replaced by the GNSS position in the Earth-centered, Earth-fixed frame, which avoids the need for complete GNSS velocity data. The simulation and flight test results show that the new robust position integration method proposed in this paper achieves higher stability and robustness than the conventional position integration OBA method and can achieve an alignment accuracy of 0.2° even when the GNSS is partially time-invalidated. Thus, this greatly extends the application of the OBA method for in-flight alignment.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217000","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In-flight alignment is a critical milestone for inertial navigation system/global navigation satellite system (INS/GNSS) applications in unmanned aerial vehicles (UAVs). The traditional position integration formula for in-flight coarse alignment requires the GNSS velocity data to be valid throughout the alignment period, which greatly limits the engineering applicability of the method. In this paper, a new robust position integration optimization-based alignment (OBA) method for in-flight coarse alignment is presented to solve the problem of in-flight alignment under a prolonged ineffective GNSS. In this methodology, to achieve a higher alignment accuracy in case the GNSS is not effective throughout the alignment period, the integration of GNSS velocity into the local-level navigation frame is replaced by the GNSS position in the Earth-centered, Earth-fixed frame, which avoids the need for complete GNSS velocity data. The simulation and flight test results show that the new robust position integration method proposed in this paper achieves higher stability and robustness than the conventional position integration OBA method and can achieve an alignment accuracy of 0.2° even when the GNSS is partially time-invalidated. Thus, this greatly extends the application of the OBA method for in-flight alignment.

基于位置整合优化的新型飞行中粗校准方法。
飞行中对准是无人飞行器(UAV)中惯性导航系统/全球导航卫星系统(INS/GNSS)应用的一个重要里程碑。用于飞行中粗对准的传统位置积分公式要求 GNSS 速度数据在整个对准期间有效,这极大地限制了该方法的工程应用性。本文提出了一种新的稳健的基于位置积分优化的飞行中粗对准(OBA)方法,以解决 GNSS 长期无效情况下的飞行中对准问题。在该方法中,为了在 GNSS 在整个对准期间都无效的情况下实现更高的对准精度,将 GNSS 速度积分到本地级导航帧中改为以地球为中心的地球固定帧中的 GNSS 位置,从而避免了对完整的 GNSS 速度数据的需求。仿真和飞行测试结果表明,与传统的位置积分 OBA 方法相比,本文提出的新型鲁棒位置积分方法具有更高的稳定性和鲁棒性,即使在 GNSS 部分失效的情况下,也能达到 0.2° 的对准精度。因此,这极大地扩展了 OBA 方法在飞行对准中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信