Jun Tao, Wen Dai, Yongnan Lyu, Hang Liu, Juan Le, Ting Sun, Qian Yao, Zhiming Zhao, Xuejun Jiang, Yan Li
{"title":"Role of intestinal testosterone-degrading bacteria and 3/17β-HSD in the pathogenesis of testosterone deficiency-induced hyperlipidemia in males.","authors":"Jun Tao, Wen Dai, Yongnan Lyu, Hang Liu, Juan Le, Ting Sun, Qian Yao, Zhiming Zhao, Xuejun Jiang, Yan Li","doi":"10.1038/s41522-024-00599-1","DOIUrl":null,"url":null,"abstract":"<p><p>Testosterone deficiency can cause abnormal lipid metabolism in men, leading to hyperlipidemia. We identified the testosterone-degrading bacterium Pseudomonas nitroreducens in the fecal samples of male patients with hyperlipidemia. Gastric administration of P. nitroreducens in mice led to testosterone deficiency and elevated blood lipid levels. Whole-genome sequencing of P. nitroreducens revealed the presence of 3/17β-hydroxysteroid dehydrogenase (3/17β-HSD), a gene responsible for testosterone degradation, which is also associated with hyperlipidemia. Microbiota analysis of fecal samples collected from 158 patients with hyperlipidemia and 151 controls revealed that the relative abundance of P. nitroreducens and 3/17β-HSD in the fecal samples of patients with hyperlipidemia was significantly higher than that in controls. These results suggest that P. nitroreducens and 3/17β-HSD may be related to the onset of testosterone deficiency-induced hyperlipidemia. Therefore, treatments targeted at eradicating testosterone-degrading bacteria are a potential future option for patients with testosterone-induced hyperlipidemia and should thus be studied further.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"123"},"PeriodicalIF":7.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00599-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Testosterone deficiency can cause abnormal lipid metabolism in men, leading to hyperlipidemia. We identified the testosterone-degrading bacterium Pseudomonas nitroreducens in the fecal samples of male patients with hyperlipidemia. Gastric administration of P. nitroreducens in mice led to testosterone deficiency and elevated blood lipid levels. Whole-genome sequencing of P. nitroreducens revealed the presence of 3/17β-hydroxysteroid dehydrogenase (3/17β-HSD), a gene responsible for testosterone degradation, which is also associated with hyperlipidemia. Microbiota analysis of fecal samples collected from 158 patients with hyperlipidemia and 151 controls revealed that the relative abundance of P. nitroreducens and 3/17β-HSD in the fecal samples of patients with hyperlipidemia was significantly higher than that in controls. These results suggest that P. nitroreducens and 3/17β-HSD may be related to the onset of testosterone deficiency-induced hyperlipidemia. Therefore, treatments targeted at eradicating testosterone-degrading bacteria are a potential future option for patients with testosterone-induced hyperlipidemia and should thus be studied further.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.