Neuroanatomical mapping of spexin and nesfatin-1-expressing neurons in the human brainstem

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Artur Pałasz , Klaudia Ozimirska , Aleksandra Suszka-Świtek , Katarzyna Bogus , Iwona Błaszczyk , Veerta Sharma , Marta Pukowiec , John J. Worthington , Izabela Młynarczuk-Biały , Anna Lipiec-Borowicz
{"title":"Neuroanatomical mapping of spexin and nesfatin-1-expressing neurons in the human brainstem","authors":"Artur Pałasz ,&nbsp;Klaudia Ozimirska ,&nbsp;Aleksandra Suszka-Świtek ,&nbsp;Katarzyna Bogus ,&nbsp;Iwona Błaszczyk ,&nbsp;Veerta Sharma ,&nbsp;Marta Pukowiec ,&nbsp;John J. Worthington ,&nbsp;Izabela Młynarczuk-Biały ,&nbsp;Anna Lipiec-Borowicz","doi":"10.1016/j.npep.2024.102484","DOIUrl":null,"url":null,"abstract":"<div><div>Neuropeptides are involved in numerous brain activities being able to control a wide spectrum of physiological functions. In recent years, a number of novel pleiotropic regulatory peptides have been discovered in animal brain structures. The purpose of this descriptive neurochemical investigation was to detect the possible expression of the novel multifunctional neuropeptides spexin (SPX) and nesfatin-1 within the human brainstem. Using immunohistochemical and fluorescence techniques, neuroanatomical analysis of the SPX and nesfatin-1 expression and distribution was performed in selected sections of the human midbrain and medulla oblongata. The presence of SPX-positive neurons in the human brainstem was revealed for the first time and previous reports on the expression of nesfatin-1 were additionally confirmed. The research results suggest that SPX and nesfatin-1 are new regulatory neuropeptides of the human brainstem potentially involved in the regulation of key autonomic activities of this brain region.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"109 ","pages":"Article 102484"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417924000830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropeptides are involved in numerous brain activities being able to control a wide spectrum of physiological functions. In recent years, a number of novel pleiotropic regulatory peptides have been discovered in animal brain structures. The purpose of this descriptive neurochemical investigation was to detect the possible expression of the novel multifunctional neuropeptides spexin (SPX) and nesfatin-1 within the human brainstem. Using immunohistochemical and fluorescence techniques, neuroanatomical analysis of the SPX and nesfatin-1 expression and distribution was performed in selected sections of the human midbrain and medulla oblongata. The presence of SPX-positive neurons in the human brainstem was revealed for the first time and previous reports on the expression of nesfatin-1 were additionally confirmed. The research results suggest that SPX and nesfatin-1 are new regulatory neuropeptides of the human brainstem potentially involved in the regulation of key autonomic activities of this brain region.
人类脑干中表达 spexin 和 nesfatin-1 神经元的神经解剖图。
神经肽参与多种大脑活动,能够控制多种生理功能。近年来,在动物大脑结构中发现了一些新型的多效调节肽。这项描述性神经化学研究的目的是检测新型多功能神经肽spexin(SPX)和nesfatin-1在人类脑干中的可能表达。研究人员利用免疫组化和荧光技术,在人中脑和延髓的部分切片中对 SPX 和 nesfatin-1 的表达和分布进行了神经解剖学分析。研究首次发现人脑干中存在 SPX 阳性神经元,并进一步证实了之前关于内司蛋白-1 表达的报道。研究结果表明,SPX 和 nesfatin-1 是人类脑干新的调节神经肽,可能参与调节该脑区的主要自律神经活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropeptides
Neuropeptides 医学-内分泌学与代谢
CiteScore
5.40
自引率
6.90%
发文量
55
审稿时长
>12 weeks
期刊介绍: The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信