Morteza Nemati, Neda Bozorgtabar, Maha Hoteit, Zahra Sadek, Abdullah Almaqhawi, Ali Rashidy-Pour, Nematollah Nemati, Mohammad Rashidi, Niloofar Karimi, Mitra Khadamosharieh, Reza Bagheri, Ayoub Saeidi, Maisa Hamed Al Kiyumi, Katie M Heinrich, Hassane Zouhal
{"title":"Antioxidant supplementation boosts the advantages of CrossFit workouts on oxidative and muscle damage markers in obese males.","authors":"Morteza Nemati, Neda Bozorgtabar, Maha Hoteit, Zahra Sadek, Abdullah Almaqhawi, Ali Rashidy-Pour, Nematollah Nemati, Mohammad Rashidi, Niloofar Karimi, Mitra Khadamosharieh, Reza Bagheri, Ayoub Saeidi, Maisa Hamed Al Kiyumi, Katie M Heinrich, Hassane Zouhal","doi":"10.1186/s12986-024-00860-6","DOIUrl":null,"url":null,"abstract":"<p><p>Supplementing with antioxidants may be one of the most efficient means of minimizing oxidative stress during workouts in obese individuals. The aim of this study is to identify the results after twelve weeks of CrossFit workouts combined with Spinach thylakoid extract on the levels of insulin resistance (insulin and Homeostatic Model Assessment of Insulin Resistance [HOMA-IR]), fasting blood sugar (FBS), malondialdehyde (MDA), creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), and superoxide dismutase (SOD), glutathione peroxidase (GPx) in obese males. Sixty-eight males with an average age of 27 ± 8 yrs and a BMI of 32.6 ± 2.6 kg.m<sup>- 2</sup> were randomly split into four groups each consisting of seventeen individuals. : control group (CG), supplement group (SG), training group (TG), and training + supplement group (TSG). After initial assessments, the two training groups (TG and TSG) started on a 12 weeks of the CrossFit workouts program involving three sessions per week each lasting up to 60 min. Participants in supplement groups ingested 30 min before lunch, 5 gof Spinach thylakoid extract per day or one sachet of raw corn starch in the control group. Baseline and post-intervention measurements were performed 48 h pre- and post-last session, respectively. The findings revealed noteworthy relationships between the exercise groups and timefor TAC, SOD, GPx, MDA, CK, and LDH (p < 0.001, ES: 0.88, 0.88, 0.8, 0.4, 0.7, and 0.7, respectively). In addition, there were statistically significant differences among study groups after attending the intervention program in TAC (ES: 0.88), SOD (ES: 0.92), GPX (ES: 0.85), MDA (ES: 0.5), CK (ES: 0.7) and LDH (ES: 0.8). The effect sizes of insulin (0.77), glucose (0.21), and HOMA-IR (0.44) varied significantly (p < 0.05) among the groups. The results demonstrated that CrossFit workouts for 12 weeks combined with Spinach thylakoid extract in men with obesity may prevent oxidative damage caused by obesity and CrossFit workouts.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"21 1","pages":"91"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00860-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Supplementing with antioxidants may be one of the most efficient means of minimizing oxidative stress during workouts in obese individuals. The aim of this study is to identify the results after twelve weeks of CrossFit workouts combined with Spinach thylakoid extract on the levels of insulin resistance (insulin and Homeostatic Model Assessment of Insulin Resistance [HOMA-IR]), fasting blood sugar (FBS), malondialdehyde (MDA), creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), and superoxide dismutase (SOD), glutathione peroxidase (GPx) in obese males. Sixty-eight males with an average age of 27 ± 8 yrs and a BMI of 32.6 ± 2.6 kg.m- 2 were randomly split into four groups each consisting of seventeen individuals. : control group (CG), supplement group (SG), training group (TG), and training + supplement group (TSG). After initial assessments, the two training groups (TG and TSG) started on a 12 weeks of the CrossFit workouts program involving three sessions per week each lasting up to 60 min. Participants in supplement groups ingested 30 min before lunch, 5 gof Spinach thylakoid extract per day or one sachet of raw corn starch in the control group. Baseline and post-intervention measurements were performed 48 h pre- and post-last session, respectively. The findings revealed noteworthy relationships between the exercise groups and timefor TAC, SOD, GPx, MDA, CK, and LDH (p < 0.001, ES: 0.88, 0.88, 0.8, 0.4, 0.7, and 0.7, respectively). In addition, there were statistically significant differences among study groups after attending the intervention program in TAC (ES: 0.88), SOD (ES: 0.92), GPX (ES: 0.85), MDA (ES: 0.5), CK (ES: 0.7) and LDH (ES: 0.8). The effect sizes of insulin (0.77), glucose (0.21), and HOMA-IR (0.44) varied significantly (p < 0.05) among the groups. The results demonstrated that CrossFit workouts for 12 weeks combined with Spinach thylakoid extract in men with obesity may prevent oxidative damage caused by obesity and CrossFit workouts.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.