Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

IF 4.7 2区 医学 Q1 NEUROIMAGING
F. Leone , A. Caporali , A. Pascarella , C. Perciballi , O. Maddaluno , A. Basti , P. Belardinelli , L. Marzetti , G. Di Lorenzo , V. Betti
{"title":"Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data","authors":"F. Leone ,&nbsp;A. Caporali ,&nbsp;A. Pascarella ,&nbsp;C. Perciballi ,&nbsp;O. Maddaluno ,&nbsp;A. Basti ,&nbsp;P. Belardinelli ,&nbsp;L. Marzetti ,&nbsp;G. Di Lorenzo ,&nbsp;V. Betti","doi":"10.1016/j.neuroimage.2024.120896","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity</div><div>analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10<sup>−2</sup>, while 10<sup>−1</sup> has to be preferred when source localization only is at target.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"303 ","pages":"Article 120896"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003938","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity
analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10−2, while 10−1 has to be preferred when source localization only is at target.
利用真实和模拟数据研究正则化参数对脑电图静息源重构和功能连接性的影响
准确的脑电图信号源定位对绘制静息态网络动态图至关重要,在估计信号源级功能连接性方面起着关键作用。然而,脑电信号源估计技术在方法论上遇到了许多挑战,其中一个关键挑战是最小规范估计中正则化参数的选择。这一选择尤为复杂,因为脑电图源估计的最佳正则化量可能与脑电图连接性分析的要求不一致,这就凸显了一种微妙的权衡。在本研究中,我们采用了一种方法论方法来确定最优正则化系数,该系数能在所有涉及不同信噪比的合成脑电信号模拟中产生最有效的重建结果。为此,我们考虑了三种静息状态网络:运动网络、视觉网络和背侧注意网络。在不同的正则化参数下,我们使用三个指标对其性能进行了评估:区域定位误差、源扩展和源分裂。我们使用真实的功能连接数据对结果进行了验证。我们发现,使用 10-2 可以获得功能连接性的最佳估计值,而当源定位只针对目标时,10-1 则是首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信