Qiang Jin Mixture Promotes Osteogenic Differentiation of MC3T3-E1 Cells via BMP2/Smads Pathway and its Network Pharmacology Study.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Weiyue Gong, Yao Zhu, Limin Wang
{"title":"Qiang Jin Mixture Promotes Osteogenic Differentiation of MC3T3-E1 Cells via BMP2/Smads Pathway and its Network Pharmacology Study.","authors":"Weiyue Gong, Yao Zhu, Limin Wang","doi":"10.1007/s12033-024-01313-4","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to explore the potential of QiangJin mixture (QJM), a Chinese herbal compound prescription, in regulating MC3T3-E1 cell differentiation and to analyze the ingredients and therapeutic targets of QJM against osteoporosis based on network pharmacology. MC3T3-E1 cells were incubated with different concentrations of QJM-contained rat serum (5, 10, or 20%). After 14 days of cell culture, Alizarin Red staining was performed to assess the mineralization ability of osteoblasts. RT-qPCR was used to measure mRNA levels of osteogenesis-related genes. Western blot was conducted to measure protein levels of factors related to the BMP2/Smads pathway. Functional and pathway enrichment of overlapping targets for QJM and osteoporosis were analyzed using gene ontology and KEGG analyses. As shown by experimental results, QJM-contained serum led to calcium deposition, increased expression levels of osteogenesis-related genes, and activated BMP2/Smad/Runx2 signaling in MC3T3-E1 cells. A total of 125 active compounds and 162 disease-related targets were identified. The core targets were MAPK8, TP53, ESR1, STAT3, MAPK3, IL6, NFKB1, JUN, MAPK1 and AKT1. In conclusion, QJM promotes the osteogenic differentiation of MC3T3-E1 cells by activating the BMP2/Smads signaling. Additionally, QJM is an anti-osteoporotic mixture by regulating diverse therapeutic targets and signaling pathways.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01313-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to explore the potential of QiangJin mixture (QJM), a Chinese herbal compound prescription, in regulating MC3T3-E1 cell differentiation and to analyze the ingredients and therapeutic targets of QJM against osteoporosis based on network pharmacology. MC3T3-E1 cells were incubated with different concentrations of QJM-contained rat serum (5, 10, or 20%). After 14 days of cell culture, Alizarin Red staining was performed to assess the mineralization ability of osteoblasts. RT-qPCR was used to measure mRNA levels of osteogenesis-related genes. Western blot was conducted to measure protein levels of factors related to the BMP2/Smads pathway. Functional and pathway enrichment of overlapping targets for QJM and osteoporosis were analyzed using gene ontology and KEGG analyses. As shown by experimental results, QJM-contained serum led to calcium deposition, increased expression levels of osteogenesis-related genes, and activated BMP2/Smad/Runx2 signaling in MC3T3-E1 cells. A total of 125 active compounds and 162 disease-related targets were identified. The core targets were MAPK8, TP53, ESR1, STAT3, MAPK3, IL6, NFKB1, JUN, MAPK1 and AKT1. In conclusion, QJM promotes the osteogenic differentiation of MC3T3-E1 cells by activating the BMP2/Smads signaling. Additionally, QJM is an anti-osteoporotic mixture by regulating diverse therapeutic targets and signaling pathways.

羌金混剂通过 BMP2/Smads 通路促进 MC3T3-E1 细胞成骨分化及其网络药理学研究
本研究旨在探索中药复方羌活混合物(QJM)调节MC3T3-E1细胞分化的潜力,并基于网络药理学分析羌活混合物防治骨质疏松症的成分和治疗靶点。将 MC3T3-E1 细胞与不同浓度的含 QJM 的大鼠血清(5%、10% 或 20%)培养。细胞培养 14 天后,进行茜素红染色以评估成骨细胞的矿化能力。RT-qPCR 用于测量成骨相关基因的 mRNA 水平。采用 Western 印迹法测定 BMP2/Smads 通路相关因子的蛋白水平。利用基因本体论和 KEGG 分析方法分析了 QJM 和骨质疏松症重叠靶点的功能和通路富集。实验结果表明,含 QJM 的血清可导致 MC3T3-E1 细胞中钙的沉积、成骨相关基因表达水平的升高以及 BMP2/Smad/Runx2 信号的激活。共鉴定出 125 种活性化合物和 162 个疾病相关靶点。核心靶点包括 MAPK8、TP53、ESR1、STAT3、MAPK3、IL6、NFKB1、JUN、MAPK1 和 AKT1。总之,QJM 可通过激活 BMP2/Smads 信号促进 MC3T3-E1 细胞的成骨分化。此外,QJM 还能调节多种治疗靶点和信号通路,是一种抗骨质疏松的混合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信