Dongkwan Yoo, Sichen Wu, Seunghyuk Choi, Sung-Oh Huh, Ali Sadra
{"title":"STK33 as the functional substrate of miR-454-3p for suppression and apoptosis in neuroblastoma","authors":"Dongkwan Yoo, Sichen Wu, Seunghyuk Choi, Sung-Oh Huh, Ali Sadra","doi":"10.1016/j.mocell.2024.100145","DOIUrl":null,"url":null,"abstract":"<div><div>miR-454-3p has been reported to be a tumor-suppressive microRNA (miRNA) in multiple cancer types. We identified the kinase STK33 mRNA, which is a high-risk factor for survival in neuroblastoma (NB) patients, as being a substrate of miR-454-3p in NB. Even though STK33 is an attractive target for several cancers, the development of inhibitors of STK33 has been challenging. For the various cell lines tested, we demonstrated reduced growth and viability with the miR-454-3p mimic. From among the candidate NB-associated miRNAs, miR-454-3p mimic and its antagonist had the most profound effect on STK33 mRNA and protein-level changes. Under various conditions of growth and external stress for the cells, the RNA levels for miR-454-3p and STK33 also negatively correlated. Luciferase reporter assays demonstrated STK33 as a substrate for miR-454-3p, and recombinant versions of STK33 resistant to miR-454-3p significantly blunted the suppressive effect of the miR-454-3p and established STK33 as the major functional substrate of miR-454-3p. Overexpression of miR-454-3p or knockdown of STK33 mRNA promoted autophagy and at the same time, increased the apoptotic markers in the tested NB cells, indicating a mechanism for the suppressive effect of the agents. Given the difficult-to-drug targets such as STK33 and the recent successes in RNA delivery methods for cancer treatment, it is thought that targeting cancer cells with a suppressive miRNA such as miR-454-3p for STK33-dependent cancer types may be an alternative means of NB therapy.</div></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":"47 12","pages":"Article 100145"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847824001705","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
miR-454-3p has been reported to be a tumor-suppressive microRNA (miRNA) in multiple cancer types. We identified the kinase STK33 mRNA, which is a high-risk factor for survival in neuroblastoma (NB) patients, as being a substrate of miR-454-3p in NB. Even though STK33 is an attractive target for several cancers, the development of inhibitors of STK33 has been challenging. For the various cell lines tested, we demonstrated reduced growth and viability with the miR-454-3p mimic. From among the candidate NB-associated miRNAs, miR-454-3p mimic and its antagonist had the most profound effect on STK33 mRNA and protein-level changes. Under various conditions of growth and external stress for the cells, the RNA levels for miR-454-3p and STK33 also negatively correlated. Luciferase reporter assays demonstrated STK33 as a substrate for miR-454-3p, and recombinant versions of STK33 resistant to miR-454-3p significantly blunted the suppressive effect of the miR-454-3p and established STK33 as the major functional substrate of miR-454-3p. Overexpression of miR-454-3p or knockdown of STK33 mRNA promoted autophagy and at the same time, increased the apoptotic markers in the tested NB cells, indicating a mechanism for the suppressive effect of the agents. Given the difficult-to-drug targets such as STK33 and the recent successes in RNA delivery methods for cancer treatment, it is thought that targeting cancer cells with a suppressive miRNA such as miR-454-3p for STK33-dependent cancer types may be an alternative means of NB therapy.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is "Mol. Cells". Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.