PunctaFinder: an algorithm for automated spot detection in fluorescence microscopy images.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Hanna M Terpstra, Rubén Gómez-Sánchez, Annemiek C Veldsink, Tegan A Otto, Liesbeth M Veenhoff, Matthias Heinemann
{"title":"PunctaFinder: an algorithm for automated spot detection in fluorescence microscopy images.","authors":"Hanna M Terpstra, Rubén Gómez-Sánchez, Annemiek C Veldsink, Tegan A Otto, Liesbeth M Veenhoff, Matthias Heinemann","doi":"10.1091/mbc.E24-06-0254","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy has revolutionised biological research by enabling the visualisation of subcellular structures at high resolution. With the increasing complexity and volume of microscopy data, there is a growing need for automated image analysis to ensure efficient and consistent interpretation. In this study, we introduce PunctaFinder, a novel Python-based algorithm designed to detect puncta, small bright spots, in raw fluorescence microscopy images without image denoising or signal enhancement steps. Furthermore, unlike other available spot detectors, PunctaFinder not only detects puncta, but also defines the cytoplasmic region, making it a valuable tool to quantify target molecule localisation in cellular contexts. PunctaFinder is a widely applicable punctum detector and size estimator, as evidenced by its successful detection of Atg9-positive vesicles, lipid droplets, aggregates of a destabilised luciferase mutant, and the nuclear pore complex. Notably, PunctaFinder excels in detecting puncta in images with a relatively low resolution and signal-to-noise ratio, demonstrating its capability to identify dim puncta and puncta of dynamic target molecules. PunctaFinder reliably detects puncta in fluorescence microscopy images where automated analysis was not possible before, providing researchers with an efficient and robust method for punctum quantification in fluorescence microscopy images.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-06-0254","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence microscopy has revolutionised biological research by enabling the visualisation of subcellular structures at high resolution. With the increasing complexity and volume of microscopy data, there is a growing need for automated image analysis to ensure efficient and consistent interpretation. In this study, we introduce PunctaFinder, a novel Python-based algorithm designed to detect puncta, small bright spots, in raw fluorescence microscopy images without image denoising or signal enhancement steps. Furthermore, unlike other available spot detectors, PunctaFinder not only detects puncta, but also defines the cytoplasmic region, making it a valuable tool to quantify target molecule localisation in cellular contexts. PunctaFinder is a widely applicable punctum detector and size estimator, as evidenced by its successful detection of Atg9-positive vesicles, lipid droplets, aggregates of a destabilised luciferase mutant, and the nuclear pore complex. Notably, PunctaFinder excels in detecting puncta in images with a relatively low resolution and signal-to-noise ratio, demonstrating its capability to identify dim puncta and puncta of dynamic target molecules. PunctaFinder reliably detects puncta in fluorescence microscopy images where automated analysis was not possible before, providing researchers with an efficient and robust method for punctum quantification in fluorescence microscopy images.

PunctaFinder:荧光显微镜图像中斑点自动检测算法。
荧光显微镜通过实现亚细胞结构的高分辨率可视化,彻底改变了生物研究。随着显微镜数据的复杂性和数量不断增加,人们越来越需要进行自动图像分析,以确保高效、一致的解读。在本研究中,我们介绍了 PunctaFinder,这是一种基于 Python 的新型算法,旨在检测原始荧光显微镜图像中的小亮点(puncta),无需图像去噪或信号增强步骤。此外,与其他现有的光点检测器不同,PunctaFinder 不仅能检测到光点,还能定义细胞质区域,使其成为在细胞环境中量化目标分子定位的重要工具。PunctaFinder 是一种应用广泛的点状物检测器和大小估算器,成功检测 Atg9 阳性囊泡、脂滴、不稳定荧光素酶突变体的聚集体和核孔复合体就是证明。值得注意的是,PunctaFinder 能在分辨率和信噪比相对较低的图像中出色地检测出点状物,这证明它有能力识别暗淡的点状物和动态目标分子的点状物。PunctaFinder 能在以前无法进行自动分析的荧光显微镜图像中可靠地检测出点状物,为研究人员提供了一种高效、稳健的荧光显微镜图像点状物定量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信