Pearl A Leon Guerrero, Jeffrey P Rasmussen, Eric Peterman
{"title":"Calcium dynamics of skin-resident macrophages during homeostasis and tissue injury.","authors":"Pearl A Leon Guerrero, Jeffrey P Rasmussen, Eric Peterman","doi":"10.1091/mbc.E24-09-0420","DOIUrl":null,"url":null,"abstract":"<p><p>Immune cells depend on rapid changes in intracellular calcium activity to modulate cell function. Skin contains diverse immune cell types and is critically dependent on calcium signaling for homeostasis and repair, yet the dynamics and functions of calcium in skin immune cells remain poorly understood. Here, we characterize calcium activity in Langerhans cells, skin-resident macrophages responsible for surveillance and clearance of cellular debris after tissue damage. Langerhans cells reside in the epidermis and extend dynamic dendrites in close proximity to adjacent keratinocytes and somatosensory peripheral axons. We find that homeostatic Langerhans cells exhibit spontaneous and transient changes in calcium activity, with calcium flux occurring primarily in the cell body and rarely in the dendrites. Triggering somatosensory axon degeneration increases the frequency of calcium activity in Langerhans cell dendrites. By contrast, we show that Langerhans cells exhibit a sustained increase in intracellular calcium following engulfment of damaged keratinocytes. Altering intracellular calcium activity leads to a decrease in engulfment efficiency of keratinocyte debris. Our findings demonstrate that Langerhans cells exhibit context-specific changes in calcium activity and highlight the utility of skin as an accessible model for imaging calcium dynamics in tissue-resident macrophages.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br26"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-09-0420","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune cells depend on rapid changes in intracellular calcium activity to modulate cell function. Skin contains diverse immune cell types and is critically dependent on calcium signaling for homeostasis and repair, yet the dynamics and functions of calcium in skin immune cells remain poorly understood. Here, we characterize calcium activity in Langerhans cells, skin-resident macrophages responsible for surveillance and clearance of cellular debris after tissue damage. Langerhans cells reside in the epidermis and extend dynamic dendrites in close proximity to adjacent keratinocytes and somatosensory peripheral axons. We find that homeostatic Langerhans cells exhibit spontaneous and transient changes in calcium activity, with calcium flux occurring primarily in the cell body and rarely in the dendrites. Triggering somatosensory axon degeneration increases the frequency of calcium activity in Langerhans cell dendrites. By contrast, we show that Langerhans cells exhibit a sustained increase in intracellular calcium following engulfment of damaged keratinocytes. Altering intracellular calcium activity leads to a decrease in engulfment efficiency of keratinocyte debris. Our findings demonstrate that Langerhans cells exhibit context-specific changes in calcium activity and highlight the utility of skin as an accessible model for imaging calcium dynamics in tissue-resident macrophages.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.