Nano-Enhanced Benzylpenicillin: Bridging Antibacterial Action with Anti-Inflammatory Potential against Antibiotic-Resistant Bacteria.

IF 2.6 4区 医学 Q3 IMMUNOLOGY
Natália Cristina Gomes-da-Silva, Álefe Roger Silva França, Clenilton Costa Dos Santos, Luciana Magalhães Rebelo Alencar, Elaine Cruz Rosas, Luana Barbosa Correa, Carolline M A Lorentino, André L S Santos, Eduardo Ricci-Junior, Ralph Santos-Oliveira
{"title":"Nano-Enhanced Benzylpenicillin: Bridging Antibacterial Action with Anti-Inflammatory Potential against Antibiotic-Resistant Bacteria.","authors":"Natália Cristina Gomes-da-Silva, Álefe Roger Silva França, Clenilton Costa Dos Santos, Luciana Magalhães Rebelo Alencar, Elaine Cruz Rosas, Luana Barbosa Correa, Carolline M A Lorentino, André L S Santos, Eduardo Ricci-Junior, Ralph Santos-Oliveira","doi":"10.1016/j.micinf.2024.105436","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.

纳米增强型苄青霉素:抗生素耐药细菌的抗菌作用与消炎潜力的桥梁
本研究探讨了利用纳米药物,特别是通过开发苄青霉素纳米乳剂来增强苄青霉素的抗菌特性。为了解决不断升级的细菌耐药性问题,我们采用了先进的拉曼光谱和原子力显微镜技术来分析纳米乳剂的分子结构和特性。然后,我们评估了这些纳米乳剂对巨噬细胞产生一氧化氮的影响,以确定其调节炎症反应的潜力。我们进一步评估了纳米颗粒对化脓性链球菌(A 组链球菌)和无乳链球菌(B 组链球菌)的抗菌效果。抗生素图谱的结果表明,它们对革兰氏阳性细菌有显著疗效,最低抑菌浓度(MIC)和最低杀菌浓度(MBC)值证实了它们的杀菌潜力。对其作用机制的研究表明,它们能极大地破坏细菌膜的完整性,从而强调了一种可能的抗菌活性模式。总之,这项研究为了解抗生素与纳米粒子之间的协同作用关系提供了宝贵的见解。特别是,它证明了苄青霉素纳米粒子具有增强抗菌效力和影响炎症反应(通过评估亚硝酸盐、IL-6 和 TNF-α)的潜力,为未来的临床应用和抗击细菌耐药性的策略提供了前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbes and Infection
Microbes and Infection 医学-病毒学
CiteScore
12.60
自引率
1.70%
发文量
90
审稿时长
40 days
期刊介绍: Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular: the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms. the immune response to infection, including pathogenesis and host susceptibility. emerging human infectious diseases. systems immunology. molecular epidemiology/genetics of host pathogen interactions. microbiota and host "interactions". vaccine development, including novel strategies and adjuvants. Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal. Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信