Samuel S Welborn, Chris Harris, Stephanie M Ribet, Georgios Varnavides, Colin Ophus, Bjoern Enders, Peter Ercius
{"title":"Streaming Large-Scale Microscopy Data to a Supercomputing Facility.","authors":"Samuel S Welborn, Chris Harris, Stephanie M Ribet, Georgios Varnavides, Colin Ophus, Bjoern Enders, Peter Ercius","doi":"10.1093/mam/ozae109","DOIUrl":null,"url":null,"abstract":"<p><p>Data management is a critical component of modern experimental workflows. As data generation rates increase, transferring data from acquisition servers to processing servers via conventional file-based methods is becoming increasingly impractical. The 4D Camera at the National Center for Electron Microscopy generates data at a nominal rate of 480 Gbit s-1 (87,000 frames s-1), producing a 700 GB dataset in 15 s. To address the challenges associated with storing and processing such quantities of data, we developed a streaming workflow that utilizes a high-speed network to connect the 4D Camera's data acquisition system to supercomputing nodes at the National Energy Research Scientific Computing Center, bypassing intermediate file storage entirely. In this work, we demonstrate the effectiveness of our streaming pipeline in a production setting through an hour-long experiment that generated over 10 TB of raw data, yielding high-quality datasets suitable for advanced analyses. Additionally, we compare the efficacy of this streaming workflow against the conventional file-transfer workflow by conducting a postmortem analysis on historical data from experiments performed by real users. Our findings show that the streaming workflow significantly improves data turnaround time, enables real-time decision-making, and minimizes the potential for human error by eliminating manual user interactions.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae109","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Data management is a critical component of modern experimental workflows. As data generation rates increase, transferring data from acquisition servers to processing servers via conventional file-based methods is becoming increasingly impractical. The 4D Camera at the National Center for Electron Microscopy generates data at a nominal rate of 480 Gbit s-1 (87,000 frames s-1), producing a 700 GB dataset in 15 s. To address the challenges associated with storing and processing such quantities of data, we developed a streaming workflow that utilizes a high-speed network to connect the 4D Camera's data acquisition system to supercomputing nodes at the National Energy Research Scientific Computing Center, bypassing intermediate file storage entirely. In this work, we demonstrate the effectiveness of our streaming pipeline in a production setting through an hour-long experiment that generated over 10 TB of raw data, yielding high-quality datasets suitable for advanced analyses. Additionally, we compare the efficacy of this streaming workflow against the conventional file-transfer workflow by conducting a postmortem analysis on historical data from experiments performed by real users. Our findings show that the streaming workflow significantly improves data turnaround time, enables real-time decision-making, and minimizes the potential for human error by eliminating manual user interactions.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.