Ellis Kennedy, Emily Hollingworth, Alejandro Ceballos, Daisy O'Mahoney, Colin Ophus, Frances Hellman, Mary Scott
{"title":"Exploring Structural Anisotropy in Amorphous Tb-Co via Changes in Medium-Range Ordering.","authors":"Ellis Kennedy, Emily Hollingworth, Alejandro Ceballos, Daisy O'Mahoney, Colin Ophus, Frances Hellman, Mary Scott","doi":"10.1093/mam/ozae113","DOIUrl":null,"url":null,"abstract":"<p><p>Amorphous thin films grown by magnetron co-sputtering exhibit changes in atomic structure with varying growth and annealing temperatures. Structural variations influence the bulk properties of the films. Scanning nanodiffraction performed in a transmission electron microscope (TEM) is applied to amorphous Tb17Co83 (a-Tb-Co) films deposited over a range of temperatures to measure relative changes in medium-range ordering (MRO). These measurements reveal an increase in MRO with higher growth temperatures and a decrease in MRO with higher annealing temperatures. The trend in MRO indicates a relationship between the growth conditions and local atomic ordering. By tilting select films, the TEM measures variations in the local atomic structure as a function of orientation within the films. The findings support claims that preferential ordering along the growth direction results from temperature-mediated adatom configurations during deposition, and that oriented MRO correlates with increased structural anisotropy, explaining the strong growth-induced perpendicular magnetic anisotropy found in rare earth-transition metal films. Beyond magnetic films, we propose the tilted FEM workflow as a method of extracting anisotropic structural information in a variety of amorphous materials with directionally dependent bulk properties, such as films with inherent bonding asymmetry grown by physical vapor deposition.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amorphous thin films grown by magnetron co-sputtering exhibit changes in atomic structure with varying growth and annealing temperatures. Structural variations influence the bulk properties of the films. Scanning nanodiffraction performed in a transmission electron microscope (TEM) is applied to amorphous Tb17Co83 (a-Tb-Co) films deposited over a range of temperatures to measure relative changes in medium-range ordering (MRO). These measurements reveal an increase in MRO with higher growth temperatures and a decrease in MRO with higher annealing temperatures. The trend in MRO indicates a relationship between the growth conditions and local atomic ordering. By tilting select films, the TEM measures variations in the local atomic structure as a function of orientation within the films. The findings support claims that preferential ordering along the growth direction results from temperature-mediated adatom configurations during deposition, and that oriented MRO correlates with increased structural anisotropy, explaining the strong growth-induced perpendicular magnetic anisotropy found in rare earth-transition metal films. Beyond magnetic films, we propose the tilted FEM workflow as a method of extracting anisotropic structural information in a variety of amorphous materials with directionally dependent bulk properties, such as films with inherent bonding asymmetry grown by physical vapor deposition.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.