{"title":"Sink-source driven metabolic acclimation of winter oilseed rape leaves (Brassica napus L.) to drought","authors":"Mathieu Aubert , Vanessa Clouet , Florian Guilbaud , Solenne Berardocco , Nathalie Marnet , Alain Bouchereau , Younès Dellero","doi":"10.1016/j.jplph.2024.154377","DOIUrl":null,"url":null,"abstract":"<div><div>The crop cycle of winter oilseed rape (WOSR) incorporates source-to-sink remobilisation during the vegetative stage as a principal factor influencing the ultimate seed yield. These processes are supported by the coordinated activity of the plant’s central metabolism. However, climate change-induced drought will affect the metabolic acclimation of WOSR sink/source relationships at this vegetative stage, with consequences that remain to be determined. In this study, we subjected WOSR to severe soil dehydration for 18 days and analysed the physiological and metabolic acclimation of sink and source leaves along the kinetics in combination with measurements of enzymatic activities and transcript levels. Overall, the acclimation of WOSR to drought led to subtle regulations of central metabolism in relation to leaf growth and Pro-induced osmotic adjustment. Notably, sink leaves drastically reduced their growth and transiently accumulated starch. Subsequent starch degradation correlated with the induction of beta-amylases, sucrose transporters, pyrroline-5-carboxylate synthases and proline accumulation. The functioning of the tricarboxylic acid cycle was also altered in sink leaves, as evidenced by variations in citrate, malate and associated enzymatic activities. The metabolic origin of Pro in sink leaves is discussed in relation to Pro accumulation in source leaves and the up-regulation of amino acid permease 1 and glutamine synthetase genes.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"303 ","pages":"Article 154377"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724002086","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The crop cycle of winter oilseed rape (WOSR) incorporates source-to-sink remobilisation during the vegetative stage as a principal factor influencing the ultimate seed yield. These processes are supported by the coordinated activity of the plant’s central metabolism. However, climate change-induced drought will affect the metabolic acclimation of WOSR sink/source relationships at this vegetative stage, with consequences that remain to be determined. In this study, we subjected WOSR to severe soil dehydration for 18 days and analysed the physiological and metabolic acclimation of sink and source leaves along the kinetics in combination with measurements of enzymatic activities and transcript levels. Overall, the acclimation of WOSR to drought led to subtle regulations of central metabolism in relation to leaf growth and Pro-induced osmotic adjustment. Notably, sink leaves drastically reduced their growth and transiently accumulated starch. Subsequent starch degradation correlated with the induction of beta-amylases, sucrose transporters, pyrroline-5-carboxylate synthases and proline accumulation. The functioning of the tricarboxylic acid cycle was also altered in sink leaves, as evidenced by variations in citrate, malate and associated enzymatic activities. The metabolic origin of Pro in sink leaves is discussed in relation to Pro accumulation in source leaves and the up-regulation of amino acid permease 1 and glutamine synthetase genes.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.