Enhanced energy storage performance in BaZrxTi1-xO3lead-free ferroelectrics near phase transitions.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Ba-Hieu Vu, Ha Thi Dang, Van-Hai Dinh, Le Van Lich
{"title":"Enhanced energy storage performance in BaZr<sub><i>x</i></sub>Ti<sub>1-<i>x</i></sub>O<sub>3</sub>lead-free ferroelectrics near phase transitions.","authors":"Ba-Hieu Vu, Ha Thi Dang, Van-Hai Dinh, Le Van Lich","doi":"10.1088/1361-648X/ad9211","DOIUrl":null,"url":null,"abstract":"<p><p>The present study explores the energy storage properties of BaZr<sub><i>x</i></sub>Ti1-xO<sub>3</sub>through phase-field modeling, focusing on the impact of composition and temperature on energy storage performance. The obtained results reveal a variety of polarization phases and configurations based on Zr compositions and temperatures. A detailed phase diagram for temperature-composition of BaZr<sub><i>x</i></sub>Ti1-xO<sub>3</sub>is established, closely aligning with experimental measurements. Variations in Zr content and temperature have a significant impact on the polarization-electric field (<i>P</i> - <i>E</i>) response, influencing the energy storage properties. Calculations of energy storage properties are derived from the<i>P</i> - <i>E</i>response. In addition, a thorough diagram is developed to illustrate the discharge energy density of BaZr<sub><i>x</i></sub>Ti1-xO<sub>3</sub>as a function of temperature and composition. Notably, high discharge energy density is achievable near the Curie temperature, corresponding to the transition from ferroelectric to paraelectric phase. Furthermore, the present study emphasizes the importance of the disparity between maximum and remanent polarization, as well as the electric field-dependent effective permittivity, in determining the discharge energy density.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9211","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the energy storage properties of BaZrxTi1-xO3through phase-field modeling, focusing on the impact of composition and temperature on energy storage performance. The obtained results reveal a variety of polarization phases and configurations based on Zr compositions and temperatures. A detailed phase diagram for temperature-composition of BaZrxTi1-xO3is established, closely aligning with experimental measurements. Variations in Zr content and temperature have a significant impact on the polarization-electric field (P - E) response, influencing the energy storage properties. Calculations of energy storage properties are derived from theP - Eresponse. In addition, a thorough diagram is developed to illustrate the discharge energy density of BaZrxTi1-xO3as a function of temperature and composition. Notably, high discharge energy density is achievable near the Curie temperature, corresponding to the transition from ferroelectric to paraelectric phase. Furthermore, the present study emphasizes the importance of the disparity between maximum and remanent polarization, as well as the electric field-dependent effective permittivity, in determining the discharge energy density.

增强 BaZrxTi1-xO3 无铅铁电体在相变附近的储能性能。
本研究通过相场建模探讨了 BaZrxTi1-xO3 的储能特性,重点是成分和温度对储能性能的影响。研究结果揭示了基于 Zr 成分和温度的各种极化相和构型。建立了 BaZrxTi1-xO3 温度-组成的详细相图,并与实验测量结果密切吻合。Zr 含量和温度的变化对极化-电场响应有重大影响,从而影响储能特性。根据极化-电场响应得出了储能特性的计算结果。此外,还绘制了一张详尽的图表,说明 BaZrxTi1-xO3 的放电能量密度与温度和成分的函数关系。值得注意的是,高放电能量密度可在居里温度附近实现,这与铁电相向副电相的转变相对应。此外,本研究还强调了最大极化和剩电极化之间的差异以及随电场变化的有效介电常数在决定放电能量密度方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信