Electronic properties of polyaniline-graphene nanocomposites synthesized via solution mixing method.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Soumyasuravi Thakur, Neeraj Rathee, Nirat Ray
{"title":"Electronic properties of polyaniline-graphene nanocomposites synthesized via solution mixing method.","authors":"Soumyasuravi Thakur, Neeraj Rathee, Nirat Ray","doi":"10.1088/1361-648X/ad92ec","DOIUrl":null,"url":null,"abstract":"<p><p>A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad92ec","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.

通过溶液混合法合成的聚苯胺-石墨烯纳米复合材料的电子特性
将石墨烯的优异特性与导电聚合物相结合的一个关键优势在于,通过在聚合物基体中添加填料,石墨烯具有显著的特性可调性,而合成路线在塑造石墨烯特性方面起着至关重要的作用。在这项工作中,我们研究了通过简单的溶液混合法合成的聚苯胺(PANI)和石墨烯纳米复合材料的电子特性。石墨烯含量的增加增强了纳米复合材料的导电性,并观察到了渗流效应。渗流阈值很高,这与结构中空隙的强大作用是一致的。随温度变化的电导率测量突显了三种不同的传导状态:绝缘、临界和金属。这些发现强调了合成方法和结构紊乱对形成电子特性的重大影响,为设计具有卓越多功能性和性能的多功能纳米复合材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信