Covariation in the Craniocervical Junction of Carnivora

IF 1.5 4区 医学 Q2 ANATOMY & MORPHOLOGY
Christine Böhmer, Mara Destina Ocak
{"title":"Covariation in the Craniocervical Junction of Carnivora","authors":"Christine Böhmer,&nbsp;Mara Destina Ocak","doi":"10.1002/jmor.70009","DOIUrl":null,"url":null,"abstract":"<p>The craniocervical junction is the transition between the skull and the vertebral column that provides mobility while maintaining sufficient stability (i.e., protection of the brainstem and the spinal cord). The key elements involved are the occiput, the first cervical vertebra (CV1, atlas) and the second cervical vertebra (CV2, axis). The two vertebrae forming the atlas-axis complex are distinct in their morphology and differences in form have been linked to differences in ecological function in mammals. Here, we quantified the morphological diversity of the cranium, CV1 and CV2 in a sample of Carnivora using 3D geometric morphometrics to reveal phylogenetic and ecological patterns. Our results indicate that the observed variation in CV2 is related to the taxonomic diversity (i.e., strong phylogenetic signal), whereas variation in CV1 appears to be decoupled from species diversity in Carnivora and, thus, is likely to reflect a functional signal. The phylogenetically informed correlation analyses showed an association between the CV1 morphology and diet. Taxa that primarily feed on large prey tend to have larger transverse processes on CV1 which provides larger muscle attachment areas and may correlate with stronger muscles. The latter needs to be verified by future quantitative covariation analyses between bone and muscle data. Morphological peculiarities within Pinnipedia and Mustelidae could be explained by differences in terrestrial locomotion between Phocidae and Otariidae and the exceptional defensive behavior (i.e., handstanding) in Mephitidae. Despite differences in the degree of morphological diversity, covariation between cranium, CV1 and CV2 morphology is consistently high (≥ 0.82) highlighting that overall, the craniocervical junction is an integrated structure, but there are traits that are not constrained.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.70009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The craniocervical junction is the transition between the skull and the vertebral column that provides mobility while maintaining sufficient stability (i.e., protection of the brainstem and the spinal cord). The key elements involved are the occiput, the first cervical vertebra (CV1, atlas) and the second cervical vertebra (CV2, axis). The two vertebrae forming the atlas-axis complex are distinct in their morphology and differences in form have been linked to differences in ecological function in mammals. Here, we quantified the morphological diversity of the cranium, CV1 and CV2 in a sample of Carnivora using 3D geometric morphometrics to reveal phylogenetic and ecological patterns. Our results indicate that the observed variation in CV2 is related to the taxonomic diversity (i.e., strong phylogenetic signal), whereas variation in CV1 appears to be decoupled from species diversity in Carnivora and, thus, is likely to reflect a functional signal. The phylogenetically informed correlation analyses showed an association between the CV1 morphology and diet. Taxa that primarily feed on large prey tend to have larger transverse processes on CV1 which provides larger muscle attachment areas and may correlate with stronger muscles. The latter needs to be verified by future quantitative covariation analyses between bone and muscle data. Morphological peculiarities within Pinnipedia and Mustelidae could be explained by differences in terrestrial locomotion between Phocidae and Otariidae and the exceptional defensive behavior (i.e., handstanding) in Mephitidae. Despite differences in the degree of morphological diversity, covariation between cranium, CV1 and CV2 morphology is consistently high (≥ 0.82) highlighting that overall, the craniocervical junction is an integrated structure, but there are traits that are not constrained.

Abstract Image

食肉目动物颅颈交界处的变异。
颅颈交界处是头骨和脊椎骨之间的过渡部位,既能提供活动度,又能保持足够的稳定性(即保护脑干和脊髓)。其中涉及的关键要素包括枕骨、第一颈椎(CV1,寰椎)和第二颈椎(CV2,轴椎)。构成寰轴复合体的两个椎骨在形态上截然不同,形态上的差异与哺乳动物生态功能的差异有关。在这里,我们利用三维几何形态计量学量化了食肉目动物样本中头盖骨、CV1 和 CV2 的形态多样性,以揭示系统发育和生态模式。我们的结果表明,观察到的 CV2 变异与分类多样性有关(即强烈的系统发育信号),而 CV1 的变异似乎与食肉目动物的物种多样性无关,因此很可能反映的是功能信号。系统发育相关分析表明,CV1 形态与食性之间存在关联。主要以大型猎物为食的类群倾向于在 CV1 上有更大的横向突起,这提供了更大的肌肉附着区域,并可能与更强壮的肌肉相关。后者需要通过今后对骨骼和肌肉数据进行定量协变分析来验证。矛科和鼬科的形态特征可通过矛科和鼬科的陆地运动差异以及鼬科的特殊防御行为(即手站立)来解释。尽管形态多样性程度存在差异,但颅骨、CV1 和 CV2 形态之间的协变性始终很高(≥ 0.82),这突出表明,总体而言,颅颈交界处是一个整体结构,但有些性状并不受约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Morphology
Journal of Morphology 医学-解剖学与形态学
CiteScore
2.80
自引率
6.70%
发文量
119
审稿时长
1 months
期刊介绍: The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed. The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信