Metal-phenolic nanoparticles enhance low temperature photothermal therapy for bacterial biofilm in superficial infections.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yang Ye, Qinqin Zheng, Ziqi Wang, Shanshan Wang, Zhouyu Lu, Qiang Chu, Yong Liu, Ke Yao, Bing Wei, Haijie Han, Hongping Chen, Xiangchun Zhang
{"title":"Metal-phenolic nanoparticles enhance low temperature photothermal therapy for bacterial biofilm in superficial infections.","authors":"Yang Ye, Qinqin Zheng, Ziqi Wang, Shanshan Wang, Zhouyu Lu, Qiang Chu, Yong Liu, Ke Yao, Bing Wei, Haijie Han, Hongping Chen, Xiangchun Zhang","doi":"10.1186/s12951-024-02985-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial infections, especially induced by multidrug-resistant pathogens, have become a significant global health concern. In the infected tissues, biofilms not only serve as a source of nutrients but also act as protective barriers that impede antibiotic penetration. Herein, we developed tea polyphenols epigallocatechin gallate (EGCG) Au nanoparticles (E-Au NPs) through direct one-step self-assembly methods by EGCG chelating with Au ions to eradicate antibiotic-resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA) and prevent the formation of biofilm under near-infrared (NIR) irradiation. The outstanding antibacterial effect involved in mild photothermal therapy, reactive oxygen species production, pathogenicity-related genes regulation, and quinoprotein formation that were specific to the polyphenol-based NPs. The excellent antibacterial and anti-inflammatory therapeutic efficacy of E-Au NPs was validated and topically applied in murine MRSA-infected skin wounds and keratitis model in vivo to kill bacteria, reduce the inflammation response and promote wound healing. Furthermore, the ophthalmic and systemic biosafety profiles were thoroughly evaluated while no significant side effects were revealed achieving a balance between high-efficiency antibacterial properties and biocompatibility. This study provides an effective therapeutic agent of metal-phenolic materials for superficial tissue infection with favorable prognosis and potential in clinical translation.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"713"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02985-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial infections, especially induced by multidrug-resistant pathogens, have become a significant global health concern. In the infected tissues, biofilms not only serve as a source of nutrients but also act as protective barriers that impede antibiotic penetration. Herein, we developed tea polyphenols epigallocatechin gallate (EGCG) Au nanoparticles (E-Au NPs) through direct one-step self-assembly methods by EGCG chelating with Au ions to eradicate antibiotic-resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA) and prevent the formation of biofilm under near-infrared (NIR) irradiation. The outstanding antibacterial effect involved in mild photothermal therapy, reactive oxygen species production, pathogenicity-related genes regulation, and quinoprotein formation that were specific to the polyphenol-based NPs. The excellent antibacterial and anti-inflammatory therapeutic efficacy of E-Au NPs was validated and topically applied in murine MRSA-infected skin wounds and keratitis model in vivo to kill bacteria, reduce the inflammation response and promote wound healing. Furthermore, the ophthalmic and systemic biosafety profiles were thoroughly evaluated while no significant side effects were revealed achieving a balance between high-efficiency antibacterial properties and biocompatibility. This study provides an effective therapeutic agent of metal-phenolic materials for superficial tissue infection with favorable prognosis and potential in clinical translation.

金属酚类纳米粒子可增强浅表感染中细菌生物膜的低温光热疗法。
细菌感染,尤其是由耐多药病原体引起的细菌感染,已成为全球关注的重大健康问题。在受感染的组织中,生物膜不仅是营养物质的来源,还是阻碍抗生素渗透的保护屏障。在此,我们开发了茶多酚表没食子儿茶素没食子酸酯(EGCG)金纳米粒子(E-Au NPs),通过EGCG与金离子螯合的直接一步自组装方法来消灭耐抗生素细菌耐甲氧西林金黄色葡萄球菌(MRSA),并在近红外(NIR)照射下防止生物膜的形成。突出的抗菌效果涉及温和的光热疗法、活性氧的产生、致病相关基因的调控以及多酚基 NPs 特有的醌蛋白的形成。实验验证了 E-Au NPs 卓越的抗菌消炎疗效,并将其局部应用于小鼠 MRSA 感染的皮肤伤口和角膜炎模型,以杀死细菌、减轻炎症反应并促进伤口愈合。此外,还对眼部和全身的生物安全性进行了全面评估,没有发现明显的副作用,实现了高效抗菌特性与生物相容性之间的平衡。这项研究为浅表组织感染提供了一种有效的金属酚类材料治疗剂,具有良好的预后和临床转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信