Novel variants in DNAH9 are present in two infertile patients with severe asthenospermia.

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY
Fei Yan, Weiwei Zhi, Yazhen Wei, Li Dai, Wenming Xu, Rui Zheng
{"title":"Novel variants in DNAH9 are present in two infertile patients with severe asthenospermia.","authors":"Fei Yan, Weiwei Zhi, Yazhen Wei, Li Dai, Wenming Xu, Rui Zheng","doi":"10.1038/s10038-024-01304-y","DOIUrl":null,"url":null,"abstract":"<p><p>Asthenospermia is a type of sperm that has malformed sperm with movement disorders that lead to male infertility. DNAH9 is a member of the dynein family and a central part of the outer dynein arm of cilia and flagella. DNAH9 gene defects are associated with primary ciliary dyskinesia and ultrastructural abnormalities in ciliary axial ultrastructure. However, the role of DNAH9 in sperm motility remains unclear, prompting us to investigate its function in spermatozoa. Familial Sanger sequencing showed that sterile males carried homozygous DNAH9 variants (c. 12218A>C, p. N4073T) and compound heterozygous variants (c.8617G>A, p.V2873M; c.11742A>T, p.E3914D), respectively. Transmission electron microscopy revealed these variants resulted in a significant lack of outer dynein arms in the cross-sectional view of the axoneme in both patients. Immunofluorescence results showed that these variants can lead to decline in DNAH9 protein expression, which led to the dysfunction of flagellar ultrastructure-related proteins, including DNAI1, DNAH1 and DNAH10. In conclusion, we identified novel biallelic variants in DNAH9 that likely bring about sharply decreased motility of spermatozoa in the two patients with asthenospermia. Our findings will widen the variant spectrum of known DNAH9 variants involving asthenospermia and further offer more proofs for genetic counseling and diagnosis.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-024-01304-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Asthenospermia is a type of sperm that has malformed sperm with movement disorders that lead to male infertility. DNAH9 is a member of the dynein family and a central part of the outer dynein arm of cilia and flagella. DNAH9 gene defects are associated with primary ciliary dyskinesia and ultrastructural abnormalities in ciliary axial ultrastructure. However, the role of DNAH9 in sperm motility remains unclear, prompting us to investigate its function in spermatozoa. Familial Sanger sequencing showed that sterile males carried homozygous DNAH9 variants (c. 12218A>C, p. N4073T) and compound heterozygous variants (c.8617G>A, p.V2873M; c.11742A>T, p.E3914D), respectively. Transmission electron microscopy revealed these variants resulted in a significant lack of outer dynein arms in the cross-sectional view of the axoneme in both patients. Immunofluorescence results showed that these variants can lead to decline in DNAH9 protein expression, which led to the dysfunction of flagellar ultrastructure-related proteins, including DNAI1, DNAH1 and DNAH10. In conclusion, we identified novel biallelic variants in DNAH9 that likely bring about sharply decreased motility of spermatozoa in the two patients with asthenospermia. Our findings will widen the variant spectrum of known DNAH9 variants involving asthenospermia and further offer more proofs for genetic counseling and diagnosis.

两名患有严重少精症的不育患者体内存在 DNAH9 的新型变体。
少精症是一种精子畸形并伴有运动障碍的精子类型,会导致男性不育。DNAH9 是动力蛋白家族的成员,是纤毛和鞭毛外部动力蛋白臂的核心部分。DNAH9 基因缺陷与原发性纤毛运动障碍和纤毛轴超微结构异常有关。然而,DNAH9在精子运动中的作用仍不清楚,这促使我们研究其在精子中的功能。家族性桑格测序显示,不育男性分别携带同源DNAH9变体(c.12218A>C,p.N4073T)和复合杂合变体(c.8617G>A,p.V2873M;c.11742A>T,p.E3914D)。透射电子显微镜显示,这些变异导致这两名患者的轴突横截面上明显缺乏外侧的动力蛋白臂。免疫荧光结果显示,这些变异可导致DNAH9蛋白表达下降,从而导致鞭毛超微结构相关蛋白(包括DNAI1、DNAH1和DNAH10)功能失调。总之,我们发现了DNAH9的新型双拷贝变异体,这些变异体可能会导致两名少精症患者的精子活力急剧下降。我们的发现将拓宽涉及无精子症的已知DNAH9变异的变异谱,并进一步为遗传咨询和诊断提供更多证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信