Detection of breast cancer using machine learning on time-series diffuse optical transillumination data.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-11-01 Epub Date: 2024-11-11 DOI:10.1117/1.JBO.29.11.115001
Nils Harnischmacher, Erik Rodner, Christoph H Schmitz
{"title":"Detection of breast cancer using machine learning on time-series diffuse optical transillumination data.","authors":"Nils Harnischmacher, Erik Rodner, Christoph H Schmitz","doi":"10.1117/1.JBO.29.11.115001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Optical mammography as a promising tool for cancer diagnosis has largely fallen behind expectations. Modern machine learning (ML) methods offer ways to improve cancer detection in diffuse optical transmission data.</p><p><strong>Aim: </strong>We aim to quantitatively evaluate the classification of cancer-positive versus cancer-negative patients using ML methods on raw transmission time series data from bilateral breast scans during subjects' rest.</p><p><strong>Approach: </strong>We use a support vector machine (SVM) with hyperparameter optimization and cross-validation to systematically explore a range of data preprocessing and feature-generation strategies. We also apply an automated ML (AutoML) framework to validate our findings. We use receiver operating characteristics and the corresponding area under the curve (AUC) to quantify classification performance.</p><p><strong>Results: </strong>For the sample group available ( <math><mrow><mi>N</mi> <mo>=</mo> <mn>63</mn></mrow> </math> , 18 cancer patients), we demonstrate an AUC score of up to 93.3% for SVM classification and up to 95.0% for the AutoML classifier.</p><p><strong>Conclusions: </strong>ML offers a viable strategy for clinically relevant breast cancer diagnosis using diffuse-optical transmission measurements. The diagnostic performance of ML on raw data can outperform traditional statistical biomarkers derived from reconstructed image time series. To achieve clinically relevant performance, our ML approach requires simultaneous bilateral scanning of the breasts with spatially dense channel coverage.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 11","pages":"115001"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.11.115001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Optical mammography as a promising tool for cancer diagnosis has largely fallen behind expectations. Modern machine learning (ML) methods offer ways to improve cancer detection in diffuse optical transmission data.

Aim: We aim to quantitatively evaluate the classification of cancer-positive versus cancer-negative patients using ML methods on raw transmission time series data from bilateral breast scans during subjects' rest.

Approach: We use a support vector machine (SVM) with hyperparameter optimization and cross-validation to systematically explore a range of data preprocessing and feature-generation strategies. We also apply an automated ML (AutoML) framework to validate our findings. We use receiver operating characteristics and the corresponding area under the curve (AUC) to quantify classification performance.

Results: For the sample group available ( N = 63 , 18 cancer patients), we demonstrate an AUC score of up to 93.3% for SVM classification and up to 95.0% for the AutoML classifier.

Conclusions: ML offers a viable strategy for clinically relevant breast cancer diagnosis using diffuse-optical transmission measurements. The diagnostic performance of ML on raw data can outperform traditional statistical biomarkers derived from reconstructed image time series. To achieve clinically relevant performance, our ML approach requires simultaneous bilateral scanning of the breasts with spatially dense channel coverage.

利用机器学习对时间序列漫反射光学透射数据进行乳腺癌检测。
意义重大:光学乳腺 X 射线摄影作为一种很有前途的癌症诊断工具,在很大程度上已经落后于人们的期望。现代机器学习(ML)方法为改进弥散光学透射数据中的癌症检测提供了途径。目的:我们旨在使用 ML 方法对受试者休息时双侧乳腺扫描的原始透射时间序列数据进行癌症阳性与癌症阴性患者的定量评估:我们使用支持向量机(SVM)进行超参数优化和交叉验证,系统地探索了一系列数据预处理和特征生成策略。我们还应用了一个自动 ML(AutoML)框架来验证我们的发现。我们使用接收者操作特征和相应的曲线下面积(AUC)来量化分类性能:对于现有样本组(N = 63,18 名癌症患者),我们证明 SVM 分类的 AUC 得分高达 93.3%,AutoML 分类器的 AUC 得分高达 95.0%:结论:ML 为使用漫射光透射测量进行临床相关的乳腺癌诊断提供了一种可行的策略。ML 对原始数据的诊断性能优于从重建图像时间序列中提取的传统统计生物标记。为了达到临床相关的性能,我们的 ML 方法需要同时对乳房进行双侧扫描,并在空间上进行密集的通道覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信