{"title":"Jade powder/PLGA composite microspheres for improved performance as potential bone repair drug carrier.","authors":"Xinlu Zhang, Zelin Liao, Chong Han, Junliang Wu, Yifei Yu, Xingyu Chen, Hao Gong, Gaohong He, Xiujuan Zhang","doi":"10.1080/09205063.2024.2426397","DOIUrl":null,"url":null,"abstract":"<p><p>Poly (lactic-co-glycolic acid) (PLGA) has been widely used as drug delivery carrier or scaffold for bone repair due to its good biocompatibility, biodegradability, and degradation rate controllability. However, defects, like acidic degradation by-products, are associated with PLGA and restrict its practical applications. Jade powder, leftover from jade polishing process, is a natural material rich in elements of Ca, Si, and Mg while biocompatible and antibacterial. Herein, jade powder/PLGA composite microspheres with different mass ratios were prepared by emulsion solvent evaporation method under the optimized conditions. Characterization from SEM, EDS, FTIR, and surface water contact angle measurements indicated jade powder was successfully combined with PLGA and improved the surface wettability of the microspheres. Moreover, it was proved, through <i>in vitro</i> simulated body fluid test as well as adipose stem cell osteogenesis analysis, that jade powder addition enhanced the pH buffering capacity of the composite microsphere for simulated body fluid, and promoted the <i>in vitro</i> osteogenic activity of adipose stem cells at a certain amount. This study provides new ideas to employ jade powder, a natural material otherwise thrown away as solid waste, for improvement on PLGA performance in bone repair or potentially other biomedical fields.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-13"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2426397","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (lactic-co-glycolic acid) (PLGA) has been widely used as drug delivery carrier or scaffold for bone repair due to its good biocompatibility, biodegradability, and degradation rate controllability. However, defects, like acidic degradation by-products, are associated with PLGA and restrict its practical applications. Jade powder, leftover from jade polishing process, is a natural material rich in elements of Ca, Si, and Mg while biocompatible and antibacterial. Herein, jade powder/PLGA composite microspheres with different mass ratios were prepared by emulsion solvent evaporation method under the optimized conditions. Characterization from SEM, EDS, FTIR, and surface water contact angle measurements indicated jade powder was successfully combined with PLGA and improved the surface wettability of the microspheres. Moreover, it was proved, through in vitro simulated body fluid test as well as adipose stem cell osteogenesis analysis, that jade powder addition enhanced the pH buffering capacity of the composite microsphere for simulated body fluid, and promoted the in vitro osteogenic activity of adipose stem cells at a certain amount. This study provides new ideas to employ jade powder, a natural material otherwise thrown away as solid waste, for improvement on PLGA performance in bone repair or potentially other biomedical fields.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.