Luyan Shen , Xianzhi Liu , Wencheng Wu , Lin Zhou , Guang Liang , Yi Wang , Wenqi Wu
{"title":"“Aging” in co-amorphous systems: Dissolution decrease and non-negligible dissolution increase during storage without recrystallization","authors":"Luyan Shen , Xianzhi Liu , Wencheng Wu , Lin Zhou , Guang Liang , Yi Wang , Wenqi Wu","doi":"10.1016/j.ijpharm.2024.124943","DOIUrl":null,"url":null,"abstract":"<div><div>Developing co-amorphous systems is a promising strategy to improve the water solubility of poorly water-soluble drugs. Most of the studies focused on the initial dissolution rate of the fresh co-amorphous systems, and only physical stability was investigated after storage. However, the maintenance of the enhanced dissolution rate of co-amorphous systems after storage is necessary for further product development. The maintenance of amorphous forms after storage does not always mean the maintenance of the dissolution rate. In this study, indomethacin, arginine, tryptophan, and phenylalanine were used as the model drug and the co-formers to prepare co-amorphous systems and then stored under dry condition and RH 60 ± 5 % condition. No recrystallization was observed after the storage for 40 d and 80 d. Interestingly, both intrinsic dissolution rate (IDR) decrease and unexpected increase after storage were confirmed. The further mixing of IND and the co-former at a molecular level and the moisture changes of the co-amorphous systems during storage were supposed to play important roles in the aging. This study reminds us that the possible dissolution changes (both dissolution decrease and increase) of co-amorphous systems during storage should be carefully considered, though these samples maintained amorphous forms.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"667 ","pages":"Article 124943"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324011773","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing co-amorphous systems is a promising strategy to improve the water solubility of poorly water-soluble drugs. Most of the studies focused on the initial dissolution rate of the fresh co-amorphous systems, and only physical stability was investigated after storage. However, the maintenance of the enhanced dissolution rate of co-amorphous systems after storage is necessary for further product development. The maintenance of amorphous forms after storage does not always mean the maintenance of the dissolution rate. In this study, indomethacin, arginine, tryptophan, and phenylalanine were used as the model drug and the co-formers to prepare co-amorphous systems and then stored under dry condition and RH 60 ± 5 % condition. No recrystallization was observed after the storage for 40 d and 80 d. Interestingly, both intrinsic dissolution rate (IDR) decrease and unexpected increase after storage were confirmed. The further mixing of IND and the co-former at a molecular level and the moisture changes of the co-amorphous systems during storage were supposed to play important roles in the aging. This study reminds us that the possible dissolution changes (both dissolution decrease and increase) of co-amorphous systems during storage should be carefully considered, though these samples maintained amorphous forms.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.