Bosco R Matamoros, Carlos Serna, Emilia Wedel, Natalia Montero, Finn Kirpekar, Bruno Gonzalez-Zorn
{"title":"NpmC - a novel A1408 16S rRNA methyltransferase in the gut of humans and animals.","authors":"Bosco R Matamoros, Carlos Serna, Emilia Wedel, Natalia Montero, Finn Kirpekar, Bruno Gonzalez-Zorn","doi":"10.1016/j.ijantimicag.2024.107382","DOIUrl":null,"url":null,"abstract":"<p><p>NpmA and NpmB are 16S rRNA methyltransferases that act on residue A1408 and confer high-level resistance to almost all aminoglycosides; however, these methyltransferases are rarely reported. A novel gene, npmC, was identified after analysisng all world-wide available metagenomic projects in a One Health context. This gene has a high level of similarity (91.5%) with npmA and up to 92.7% similarity at amino acidic level. The protein encoded by this gene presents the conserved motifs required for A1408 methylation. npmC was synthesized and its expression in Escherichia coli resulted in a high level of resistance to 4,5-disubstituted 2-deoxystreptamine (2-DOS) and 4-monosubstituted 2-DOS aminoglycosides, as well as moderate resistance to 4,6-disusbstituted 2-DOS aminoglycosides, including the last resort aminoglycoside, plazomicin. Methylation at residue A1408 was confirmed by mass spectrometry assays. Analysis of the npmC gene background revealed that its genetic context was associated with different insertion sequences that could mobilise the gene. Similarities in the genetic context between npmC and npmA indicate that they share a common ancestor. The immediate genetic context of this methyltransferase indicates a high relationship to the Eubacteriales order. This finding reveals the dark matter of the microbiome as a potential source of novel resistance genes, expands the list of the true pan-aminoglycoside 16S rRNA methyltransferases, which threaten the usefulness and development of next-generation aminoglycosides.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107382"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107382","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
NpmA and NpmB are 16S rRNA methyltransferases that act on residue A1408 and confer high-level resistance to almost all aminoglycosides; however, these methyltransferases are rarely reported. A novel gene, npmC, was identified after analysisng all world-wide available metagenomic projects in a One Health context. This gene has a high level of similarity (91.5%) with npmA and up to 92.7% similarity at amino acidic level. The protein encoded by this gene presents the conserved motifs required for A1408 methylation. npmC was synthesized and its expression in Escherichia coli resulted in a high level of resistance to 4,5-disubstituted 2-deoxystreptamine (2-DOS) and 4-monosubstituted 2-DOS aminoglycosides, as well as moderate resistance to 4,6-disusbstituted 2-DOS aminoglycosides, including the last resort aminoglycoside, plazomicin. Methylation at residue A1408 was confirmed by mass spectrometry assays. Analysis of the npmC gene background revealed that its genetic context was associated with different insertion sequences that could mobilise the gene. Similarities in the genetic context between npmC and npmA indicate that they share a common ancestor. The immediate genetic context of this methyltransferase indicates a high relationship to the Eubacteriales order. This finding reveals the dark matter of the microbiome as a potential source of novel resistance genes, expands the list of the true pan-aminoglycoside 16S rRNA methyltransferases, which threaten the usefulness and development of next-generation aminoglycosides.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.